The design of highly efficient, durable, and earth-abundant catalysts for the oxygen evolution reaction is crucial to a variety of important energy conversion and storage processes. Here, we use carbon quantum dots (CQDs, ∼5 nm) to form hybrids with the ultrathin nickel-iron layered double-hydroxide (NiFe-LDH) nanoplates. The resulting CQD/NiFe-LDH complex exhibits high electrocatalytic activity (with an overpotential of ∼235 mV in 1 M KOH at a current density of 10 mA cm(-2)) and stability for oxygen evolution, which almost exceed the values of all previously reported Ni-Fe compounds and were comparable to those of the most active perovskite-based catalyst.
Carbon quantum dots (CQDs) were demonstrated to have the ability to enhance the photocatalytic performance of monoclinic BiVO4 with different exposed facets under visible light.
A combustion flame method is developed for the convenient and scalable fabrication of single- and dual-doped carbon quantum dots (CQDs) (N-CQDs, B-CQDs, P-CQDs, and S-CQDs and dual-doped B,N-CQDs, P,N-CQDs, and S,N-CQDs), and the doping contents can be easily adjusted by simply changing the concentrations of precursors in ethanol. These single/dual-doped CQDs, especially B,N-CQDs, show high catalytic activities for the oxygen reduction reaction.
Tailoring high performance, stable, and earth-abundant electrocatalysts for water oxidation is of fundamental importance for the development of promising energy conversion and storage technologies. In this work, we report a remarkably simple and efficient approach for the preparation of ZnCo-layered double hydroxides and reduced graphene oxide (RGO/ZnCo-LDH) nanocomposites via a facile one-pot coprecipitation method. The resulting RGO/ZnCo-LDH complex investigated for the first time as a catalyst for oxygen evolution reaction (OER) exhibits higher electrocatalytic activity (with onset overpotential ∼330 mV in 0.1 M KOH) and excellent stability than pristine ZnCo-layered double hydroxides and commercial Pt/C, making it a highly efficient nonprecious metal-based novel LDH composite electrocatalyst for OER.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.