Purpose
To explore the value of radiomics in the identification of lung adenocarcinomas with predominant lepidic growth in pure ground-glass nodules (pGGNs) larger than 10 mm.
Methods
We retrospectively analyzed CT images of 204 patients with large pGGNs (≥ 10 mm) pathologically diagnosed as minimally invasive adenocarcinomas (MIAs), lepidic predominant adenocarcinomas (LPAs), and non-lepidic predominant adenocarcinomas (NLPAs). All pGGNs in the two groups (MIA/LPA and NLPA) were randomly divided into training and test cohorts. Forty-seven patients from another center formed the external validation cohort. Baseline features, including clinical data and CT morphological and quantitative parameters, were collected to establish a baseline model. The radiomics model was built with the optimal radiomics features. The combined model was developed using the rad_score and independent baseline predictors. The performance of the models was evaluated using the area under the receiver operating characteristic curve (AUC) and compared using the DeLong test. The differential diagnosis performance of the models was compared with three radiologists (with 20+, 10+, and 3 years of experience) in the test cohort.
Results
The radiomics (training AUC: 0.833; test AUC: 0.804; and external validation AUC: 0.792) and combined (AUC: 0.849, 0.820, and 0.775, respectively) models performed better for discriminating than the baseline model (AUC: 0.756, 0.762, and 0.725, respectively) developed by tumor location and mean CT value of the whole nodule. The DeLong test showed that the AUCs of the combined and radiomics models were significantly increased in the training cohort. The highest AUC value of the radiologists was 0.600.
Conclusion
The application of CT radiomics improved the identification performance of lung adenocarcinomas with predominant lepidic growth appearing as pGGNs larger than 10 mm.
Background
Pleural deformation is associated with the invasiveness of lung adenocarcinoma(LAC). Our study focused on the pathological components of the area adjacent pleura in pulmonary pure ground-glass nodules(pGGNs) with pleural deformations(P-pGGNs) confirmed to be invasive LAC without visceral pleural invasion (VPI) pathologically.
Methods
Computed tomography(CT) imaging features of nodules and pathological components of the area adjacent pleura were analyzed and recorded. Statistical analysis was performed for subgroups of P-pGGNs.
Results
The 81 enrolled patients with 81 P-pGGNs were finally involved in the analysis. None of solid/micropapillary group and none of VPI was observed, 54 alveoli/lepidics and 27 acinar/papillarys were observed. In P-pGGN with acinar/papillary components of the area adjacent pleura, invasive adenocarcinoma (IAC) was more common compared to minimally invasive adenocarcinoma (MIA, 74.07% vs. 25.93%; p < 0.001). The distance in alveoli/lepidic group was significantly larger (1.50 mm vs. 0.00 mm; p < 0.001) and the depth was significantly smaller (2.00 mm vs. 6.00 mm; p < 0.001) than that in acinar/papillary group. The CT attenuation value, maximum diameter and maximum vertical diameter was valuable to distinguish acinar/papillary group form alveoli/lepidic group(p < 0.05). The type d pleural deformation was the common pleural deformation in IAC(p = 0.028).
Conclusions
The pathological components of the area adjacent pleura in P-pGGN without VPI confirmed to be invasive LAC could included alveoli/lepidics and acinar/papillarys. Some CT indicators that can identify the pathological invasive components of the area adjacent pleura in P-pGGNs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.