BackgroundProbiotics are beneficial bacteria that are able to colonize the host digestive system, increasing the natural flora and preventing colonization of pathogenic organisms and thus, securing optimal utility of the feed. However, commercial probiotic often do not meet the expected standards and the viability of the efficacy of these strains remains questionable. Another major issue has been highlighted in relation to the application of antibiotic resistant probiotics, the antibiotic resistant gene can be transferred between organisms. Recently, postbiotic metabolites produced from microbes have been extensively studied as feed additive in order to substitute in-feed antibiotics.ResultsNo significant difference (P > 0.05) was found among the treatment groups on overall feed intake, egg weight, egg mass and feed conversion efficiency. COM456 had a significant reduction (P < 0.05) in faecal pH compared to the other groups at 28 weeks of age onwards. COM456 had significant higher (P < 0.05) level of lactic acid bacteria counts from 30 weeks of age onwards, followed by COM246 and COM345 at 32 and 34 weeks of age, respectively. Significant reduction of faecal Enterobacteriaceae (P < 0.05) were observed in COM246 and COM456 from 30 weeks of age onwards. The lowest levels (P < 0.05) of plasma and egg yolk cholesterol were observed in COM456, followed by COM345 and COM246. There was no significant difference in terms of yolk weight between the treatment groups. Significant higher (P < 0.05) content of C18:3, C20:2 and C22:6 were found in treatments supplemented with metabolite combinations as compared with the control group.ConclusionsThe present study demonstrated the positive effects of metabolite combinations supplementation in laying hens. Increase in hen-day egg production was observed in all treatments supplemented with metabolite combinations. In addition, the metabolite combinations, COM456 had reduced the faecal pH and faecal Enterobacteriaceae population, improved the faecal lactic acid bacteria, reduced the plasma and yolk cholesterol and improved the faecal volatile fatty acids content. Postbiotic metabolite combinations can be used as an alternative feed additive to achieve high productivity and better animal health while reducing the use of conventional chemotherapeutic agents such as in-feed antimicrobials.
A study was conducted to investigate the effects of feeding medium chain triacylglycerol (MCT) on growth performance, plasma fatty acids, villus height and crypt depth in preweaning piglets. A total of 150 new born piglets were randomly assigned into one of three treatments: i) Control (no MCT); ii) MCT with milk (MCT+milk); iii) MCT without milk (MCT+fasting). Body weight, plasma fatty acid profiles, villus height and crypt depth were measured. Final BW for the Control and MCT+fasting was lower (p<0.05) than MCT+milk. The piglets fed with MCT regardless of milk provision or fasting had greater medium chain fatty acids (MCFA) than the Control. In contrast, the Control had greater long chain fatty acid (LCFA) and unsaturated fatty acid (USFA) than the MCT piglets. The piglets fed with MCT regardless of milk provision or fasting had higher villus height for the duodenum and jejunum after 6 h of feeding. Similar observations were found in piglets fed with MCT after 6 and 8 days of treatment. This study showed that feeding MCT to the piglets before weaning improved growth performance, with a greater concentration of MCT in blood plasma as energy source and a greater height of villus in duodenum, jejunum and ileum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.