Leaf‐wood separation in terrestrial LiDAR data is a prerequisite for non‐destructively estimating biophysical forest properties such as standing wood volumes and leaf area distributions. Current methods have not been extensively applied and tested on tropical trees. Moreover, their impacts on the accuracy of subsequent wood volume retrieval were rarely explored. We present LeWoS, a new fully automatic tool to automate the separation of leaf and wood components, based only on geometric information at both the plot and individual tree scales. This data‐driven method utilizes recursive point cloud segmentation and regularization procedures. Only one parameter is required, which makes our method easily and universally applicable to data from any LiDAR technology and forest type. We conducted a twofold evaluation of the LeWoS method on an extensive dataset of 61 tropical trees. We first assessed the point‐wise classification accuracy, yielding a score of 0.91 ± 0.03 in average. Second, we evaluated the impact of the proposed method on 3D tree models by cross‐comparing estimates in wood volume and branch length with those based on manually separated wood points. This comparison showed similar results, with relative biases of less than 9% and 21% on volume and length respectively. LeWoS allows an automated processing chain for non‐destructive tree volume and biomass estimation when coupled with 3D modelling methods. The average processing time on a laptop was 90s for 1 million points. We provide LeWoS as an open‐source tool with an end‐user interface, together with a large dataset of labelled 3D point clouds from contrasting forest structures. This study closes the gap for stand volume modelling in tropical forests where leaf and wood separation remain a crucial challenge.
Abstract:In this study, a methodology for glacier elevation reconstruction from Digital Elevation Model (DEM) time series (tDEM) is described for modeling the evolution of glacier elevation and estimating related volume change, with focus on medium-resolution and noisy satellite DEMs. The method is robust with respect to outliers in individual DEM products. Fox
The measurements of tree attributes required for forest monitoring and management planning, e.g., National Forest Inventories, are derived by rather time-consuming field measurements on sample plots, using calipers and measurement tapes. Therefore, forest managers and researchers are looking for alternative methods. Currently, terrestrial laser scanning (TLS) is the remote sensing method that provides the most accurate point clouds at the plot-level to derive these attributes from. However, the demand for even more efficient and effective solutions triggers further developments to lower the acquisition time, costs, and the expertise needed to acquire and process 3D point clouds, while maintaining the quality of extracted tree parameters. In this context, photogrammetry is considered a potential solution. Despite a variety of studies, much uncertainty still exists about the quality of photogrammetry-based methods for deriving plot-level forest attributes in natural forests. Therefore, the overall goal of this study is to evaluate the competitiveness of terrestrial photogrammetry based on structure from motion (SfM) and dense image matching for deriving tree positions, diameters at breast height (DBHs), and stem curves of forest plots by means of a consumer grade camera. We define an image capture method and we assess the accuracy of the photogrammetric results on four forest plots located in Austria and Slovakia, two in each country, selected to cover a wide range of conditions such as terrain slope, undergrowth vegetation, and tree density, age, and species. For each forest plot, the reference data of the forest parameters were obtained by conducting field surveys and TLS measurements almost simultaneously with the photogrammetric acquisitions. The TLS data were also used to estimate the accuracy of the photogrammetric ground height, which is a necessary product to derive DBHs and tree heights. For each plot, we automatically derived tree counts, tree positions, DBHs, and part of the stem curve from both TLS and SfM using a software developed at TU Wien (Forest Analysis and Inventory Tool, FAIT), and the results were compared. The images were oriented with errors of a few millimetres only, according to checkpoint residuals. The automatic tree detection rate for the SfM reconstruction ranges between 65% and 98%, where the missing trees have average DBHs of less than 12 cm. For each plot, the mean error of SfM and TLS DBH estimates is −1.13 cm and −0.77 cm with respect to the caliper measurements. The resulting stem curves show that the mean differences between SfM and TLS stem diameters is at maximum −2.45 cm up to 3 m above ground, which increases to almost +4 cm for higher elevations. This study shows that with the adopted image capture method, terrestrial SfM photogrammetry, is an accurate solution to support forest inventory for estimating the number of trees and their location, the DBHs and stem curve up to 3 m above ground.
Many biophysical forest properties such as wood volume and leaf area index (LAI) require prior knowledge on either photosynthetic or non-photosynthetic components. Laser scanning appears to be a helpful technique in nondestructively quantifying forest structures, as it can acquire an accurate three-dimensional point cloud of objects. In this study, we propose an unsupervised geometry-based method named Dynamic Segment Merging (DSM) to identify non-photosynthetic components of trees by semantically segmenting tree point clouds, and examining the linear shape prior of each resulting segment. We tested our method using one single tree dataset and four plot-level datasets, and compared our results to a supervised machine learning method. We further demonstrated that by using an optimal neighborhood selection method that involves multi-scale analysis, the results were improved. Our results showed that the overall accuracy ranged from 81.8% to 92.0% with an average value of 87.7%. The supervised machine learning method had an average overall accuracy of 86.4% for all datasets, on account of a collection of manually delineated representative training data. Our study indicates that separating tree photosynthetic and non-photosynthetic components from laser scanning data can be achieved in a fully unsupervised manner without the need of training data and user intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.