Motivation Drug discovery demands rapid quantification of compound–protein interaction (CPI). However, there is a lack of methods that can predict compound–protein affinity from sequences alone with high applicability, accuracy and interpretability. Results We present a seamless integration of domain knowledges and learning-based approaches. Under novel representations of structurally annotated protein sequences, a semi-supervised deep learning model that unifies recurrent and convolutional neural networks has been proposed to exploit both unlabeled and labeled data, for jointly encoding molecular representations and predicting affinities. Our representations and models outperform conventional options in achieving relative error in IC50 within 5-fold for test cases and 20-fold for protein classes not included for training. Performances for new protein classes with few labeled data are further improved by transfer learning. Furthermore, separate and joint attention mechanisms are developed and embedded to our model to add to its interpretability, as illustrated in case studies for predicting and explaining selective drug–target interactions. Lastly, alternative representations using protein sequences or compound graphs and a unified RNN/GCNN-CNN model using graph CNN (GCNN) are also explored to reveal algorithmic challenges ahead. Availability and implementation Data and source codes are available at https://github.com/Shen-Lab/DeepAffinity. Supplementary information Supplementary data are available at Bioinformatics online.
In recent years, a lot of efforts have been made in conformational epitope prediction as antigen proteins usually bind antibodies with an assembly of sequentially discontinuous and structurally compact surface residues. Currently, only a few methods for spatial epitope prediction are available with focus on single residue propensity scales or continual segments clustering. In the method of SEPPA, a concept of ‘unit patch of residue triangle’ was introduced to better describe the local spatial context in protein surface. Besides that, SEPPA incorporated clustering coefficient to describe the spatial compactness of surface residues. Validated by independent testing datasets, SEPPA gave an average AUC value over 0.742 and produced a successful pick-up rate of 96.64%. Comparing with peers, SEPPA shows significant improvement over other popular methods like CEP, DiscoTope and BEpro. In addition, the threshold scores for certain accuracy, sensitivity and specificity are provided online to give the confidence level of the spatial epitope identification. The web server can be accessed at http://lifecenter.sgst.cn/seppa/index.php. Batch query is supported.
Global light transport is composed of direct and indirect components. In this paper, we take the first steps toward analyzing light transport using high temporal resolution information via time of flight (ToF) images. The time profile at each pixel encodes complex interactions between the incident light and the scene geometry with spatially-varying material properties. We exploit the time profile to decompose light transport into its constituent direct, subsurface scattering, and interreflection components.We show that the time profile is well modelled using a Gaussian function for the direct and interreflection components, and a decaying exponential function for the subsurface scattering component. We use our direct, subsurface scattering, and interreflection separation algorithm for four computer vision applications: recovering projective depth maps, identifying subsurface scattering objects, measuring parameters of analytical subsurface scattering models, and performing edge detection using ToF images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.