The brown planthopper (BPH) and white-backed planthopper (WBPH) are the most destructive insect pests of rice, and they pose serious threats to rice production throughout Asia. Thus, there are urgent needs to identify resistance-conferring genes and to breed planthopper-resistant rice varieties. Here we report the map-based cloning and functional analysis of Bph6, a gene that confers resistance to planthoppers in rice. Bph6 encodes a previously uncharacterized protein that localizes to exocysts and interacts with the exocyst subunit OsEXO70E1. Bph6 expression increases exocytosis and participates in cell wall maintenance and reinforcement. A coordinated cytokinin, salicylic acid and jasmonic acid signaling pathway is activated in Bph6-carrying plants, which display broad resistance to all tested BPH biotypes and to WBPH without sacrificing yield, as these plants were found to maintain a high level of performance in a field that was heavily infested with BPH. Our results suggest that a superior resistance gene that evolved long ago in a region where planthoppers are found year round could be very valuable for controlling agricultural insect pests.
BROWN PLANTHOPPER RESISTANCE14 (BPH14), the first planthopper resistance gene isolated via map-based cloning in rice (Oryza sativa), encodes a coiled-coil, nucleotide binding site, leucine-rich repeat (CC-NB-LRR) protein. Several planthopper and aphid resistance genes encoding proteins with similar structures have recently been identified. Here, we analyzed the functions of the domains of BPH14 to identify molecular mechanisms underpinning BPH14-mediated planthopper resistance. The CC or NB domains alone or in combination (CC-NB [CN]) conferred a similar level of brown planthopper resistance to that of full-length (FL) BPH14. Both domains activated the salicylic acid signaling pathway and defense gene expression. In rice protoplasts and Nicotiana benthamiana leaves, these domains increased reactive oxygen species levels without triggering cell death. Additionally, the resistance domains and FL BPH14 protein formed homocomplexes that interacted with transcription factors WRKY46 and WRKY72. In rice protoplasts, the expression of FL BPH14 or its CC, NB, and CN domains increased the accumulation of WRKY46 and WRKY72 as well as WRKY46-and WRKY72-dependent transactivation activity. WRKY46 and WRKY72 bind to the promoters of the receptor-like cytoplasmic kinase gene RLCK281 and the callose synthase gene LOC_Os01g67364.1, whose transactivation activity is dependent on WRKY46 or WRKY72. These findings shed light on this important insect resistance mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.