This paper studies the stability of switched systems in which all the subsystems may be unstable. In addition, some of the switching behaviors of the systems are destabilizing. By using the piecewise Lyapunov function method and taking a tradeoff between the increasing scale and the decreasing scale of the Lyapunov function at switching times, the maximum dwell time for admissible switching signals is obtained and the extended stability results for switched systems in a nonlinear setting are first derived. Then, based on the discretized Lyapunov function method, the switching stabilization problem for linear context is solved. By contrasting with the contributions available in the literature, we do not require that all the switching behaviors of the switching system under consideration are stabilizing. More specifically, even if all the subsystems governing the continuous dynamics are not stable and some of the switching behaviors are destabilizing, the stability of the switched system can still be retained. A numerical example is given to illustrate the validity of the proposed results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.