Majorana zero-modes-a type of localized quasiparticle-hold great promise for topological quantum computing. Tunnelling spectroscopy in electrical transport is the primary tool for identifying the presence of Majorana zero-modes, for instance as a zero-bias peak in differential conductance. The height of the Majorana zero-bias peak is predicted to be quantized at the universal conductance value of 2e/h at zero temperature (where e is the charge of an electron and h is the Planck constant), as a direct consequence of the famous Majorana symmetry in which a particle is its own antiparticle. The Majorana symmetry protects the quantization against disorder, interactions and variations in the tunnel coupling. Previous experiments, however, have mostly shown zero-bias peaks much smaller than 2e/h, with a recent observation of a peak height close to 2e/h. Here we report a quantized conductance plateau at 2e/h in the zero-bias conductance measured in indium antimonide semiconductor nanowires covered with an aluminium superconducting shell. The height of our zero-bias peak remains constant despite changing parameters such as the magnetic field and tunnel coupling, indicating that it is a quantized conductance plateau. We distinguish this quantized Majorana peak from possible non-Majorana origins by investigating its robustness to electric and magnetic fields as well as its temperature dependence. The observation of a quantized conductance plateau strongly supports the existence of Majorana zero-modes in the system, consequently paving the way for future braiding experiments that could lead to topological quantum computing.
Solar powered hydrogen evolution reaction (HER) is one of the key reactions in solar-to-chemical energy conversion. It is desirable to develop photocathodic materials that exhibit high activity toward photoelectrochemical (PEC) HER at more positive potentials because a higher potential means a lower overpotential for HER. In this work, the Cu2O/CuO bilayered composites were prepared by a facile method that involved an electrodeposition and a subsequent thermal oxidation. The resulting Cu2O/CuO bilayered composites exhibited a surprisingly high activity and good stability toward PEC HER, expecially at high potentials in alkaline solution. The photocurrent density for HER was 3.15 mA·cm−2 at the potential of 0.40 V vs. RHE, which was one of the two highest reported at the same potential on copper-oxide-based photocathode. The high photoactivity of the bilayered composite was ascribed to the following three advantages of the Cu2O/CuO heterojunction: (1) the broadened light absorption band that made more efficient use of solar energy, (2) the large space-charge-region potential that enabled a high efficiency for electron-hole separation, and (3) the high majority carrier density that ensured a faster charge transportation rate. This work reveals the potential of the Cu2O/CuO bilayered composite as a promising photocathodic material for solar water splitting.
Semiconductor nanowires provide an ideal platform for various low-dimensional quantum devices. In particular, topological phases of matter hosting non-Abelian quasiparticles can emerge when a semiconductor nanowire with strong spin-orbit coupling is brought in contact with a superconductor 1,2 . To fully exploit the potential of non-Abelian anyons for topological quantum computing, they need to be exchanged in a wellcontrolled braiding operation 3-8 . Essential hardware for braiding is a network of singlecrystalline nanowires coupled to superconducting islands. Here, we demonstrate a technique for generic bottom-up synthesis of complex quantum devices with a special focus on nanowire networks having a predefined number of superconducting islands.Structural analysis confirms the high crystalline quality of the nanowire junctions, as well as an epitaxial superconductor-semiconductor interface. Quantum transport measurements of nanowire "hashtags" reveal Aharonov-Bohm and weak-antilocalization effects, indicating a phase coherent system with strong spin-orbit coupling. In addition, a 2 proximity-induced hard superconducting gap is demonstrated in these hybrid superconductor-semiconductor nanowires, highlighting the successful materials development necessary for a first braiding experiment. Our approach opens new avenues for the realization of epitaxial 3-dimensional quantum device architectures.Majorana Zero Modes (MZMs) are predicted to emerge once a superconductor (SC) is coupled to a semiconductor nanowire (NW) with a strong spin-orbit interaction (SOI) in an external magnetic field 1,2 . InSb NWs are a prime choice for this application due to the large Landé g-factor (~50) and strong Rashba SOI 9 , crucial for realization of MZMs. In addition, InSb nanowires generally show high mobility and ballistic transport [10][11][12] . Indeed, signatures of Majorana zero modes (MZMs) have been detected in hybrid superconductor-semiconductor InSb and InAs NW systems 11,[13][14][15] . Multiple schemes for topological quantum computing based on braiding of MZMs have been reported, all employing hybrid NW networks 3-8 .Top-down fabrication of InSb NW networks is an attractive route towards scalability 16 , however, the large lattice mismatch between InSb and insulating growth substrates limits the crystal quality. An alternative approach is bottom-up synthesis of out-of-plane NW networks which, due to their large surface-to-volume ratio, effectively relieve strain on their sidewalls, enabling the growth of single-crystalline NWs on highly lattice-mismatched substrates [17][18][19] .Recently, different schemes have been reported for merging NWs into networks [20][21][22] .Unfortunately, these structures are either not single-crystalline, due to a mismatch of the crystal structure of the wires with that of the substrate (i.e. hexagonal NWs on a cubic substrate) 22 , or the yield is low due to the limited control over the multiple accessible growth directions (the yield decreases with the number of junctions in the network) 23 ....
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.