Protein–protein and protein–DNA/RNA interactions play a fundamental role in a variety of biological processes. Determining the complex structures of these interactions is valuable, in which molecular docking has played an important role. To automatically make use of the binding information from the PDB in docking, here we have presented HDOCK, a novel web server of our hybrid docking algorithm of template-based modeling and free docking, in which cases with misleading templates can be rescued by the free docking protocol. The server supports protein–protein and protein–DNA/RNA docking and accepts both sequence and structure inputs for proteins. The docking process is fast and consumes about 10–20 min for a docking run. Tested on the cases with weakly homologous complexes of <30% sequence identity from five docking benchmarks, the HDOCK pipeline tied with template-based modeling on the protein–protein and protein–DNA benchmarks and performed better than template-based modeling on the three protein–RNA benchmarks when the top 10 predictions were considered. The performance of HDOCK became better when more predictions were considered. Combining the results of HDOCK and template-based modeling by ranking first of the template-based model further improved the predictive power of the server. The HDOCK web server is available at http://hdock.phys.hust.edu.cn/.
Conformation generation of protein-bound peptides is critical for the determination of protein–peptide complex structures. Despite significant progress in conformer generation of small molecules, few methods have been developed for modeling protein-bound peptide conformations. Here, we have developed a fast de novo peptide modeling algorithm, referred to as MODPEP, for conformational sampling of protein-bound peptides. Given a sequence, MODPEP builds the peptide 3D structure from scratch by assembling amino acids or helix fragments based on constructed rotamer and helix libraries. The MODPEP algorithm was tested on a diverse set of 910 experimentally determined protein-bound peptides with 3–30 amino acids from the PDB and obtained an average accuracy of 1.90 Å when 200 conformations were sampled for each peptide. On average, MODPEP obtained a success rate of 74.3% for all the 910 peptides and ≥ 90% for short peptides with 3–10 amino acids in reproducing experimental protein-bound structures. Comparative evaluations of MODPEP with three other conformer generation methods, PEP-FOLD3, RDKit, and Balloon, have also been performed in both accuracy and success rate. MODPEP is fast and can generate 100 conformations for less than one second. The fast MODPEP will be beneficial for large-scale de novo modeling and docking of peptides. The MODPEP program and libraries are available for download at http://huanglab.phys.hust.edu.cn/. Electronic supplementary materialThe online version of this article (10.1186/s13321-017-0246-7) contains supplementary material, which is available to authorized users.
Accurate prediction of a protein's structure requires a reliable free energy function that consists of both enthalpic and entropic contributions. Although considerable progresses have been made in the calculation of potential energies in protein structure prediction, the computation for entropies of protein has lagged far behind, due to the challenge that estimation of entropies often requires expensive conformational sampling. In this study, we have used a knowledge-based approach to estimate the backbone conformational entropies from experimentally determined structures. Instead of conducting computationally expensive MD/MC simulations, we obtained the entropies of protein structures based on the normalized probability distributions of back dihedral angles observed in the native structures. Our new knowledge-based scoring function with inclusion of the backbone entropies, which is referred to as ITScoreDA or ITDA, was extensively evaluated on 16 commonly used decoy sets and compared with 50 other published scoring functions. It was shown that ITDA is significantly superior to the other tested scoring functions in selecting native structures from decoys. The present study suggests the role of backbone conformational entropies in protein structures and provides a way for fast estimation of the entropic effect.
RNA–RNA interactions play fundamental roles in gene and cell regulation. Therefore, accurate prediction of RNA–RNA interactions is critical to determine their complex structures and understand the molecular mechanism of the interactions. Here, we have developed a physics-based double-iterative strategy to determine the effective potentials for RNA–RNA interactions based on a training set of 97 diverse RNA–RNA complexes. The double-iterative strategy circumvented the reference state problem in knowledge-based scoring functions by updating the potentials through iteration and also overcame the decoy-dependent limitation in previous iterative methods by constructing the decoys iteratively. The derived scoring function, which is referred to as DITScoreRR, was evaluated on an RNA–RNA docking benchmark of 60 test cases and compared with three other scoring functions. It was shown that for bound docking, our scoring function DITScoreRR obtained the excellent success rates of 90% and 98.3% in binding mode predictions when the top 1 and 10 predictions were considered, compared to 63.3% and 71.7% for van der Waals interactions, 45.0% and 65.0% for ITScorePP, and 11.7% and 26.7% for ZDOCK 2.1, respectively. For unbound docking, DITScoreRR achieved the good success rates of 53.3% and 71.7% in binding mode predictions when the top 1 and 10 predictions were considered, compared to 13.3% and 28.3% for van der Waals interactions, 11.7% and 26.7% for our ITScorePP, and 3.3% and 6.7% for ZDOCK 2.1, respectively. DITScoreRR also performed significantly better in ranking decoys and obtained significantly higher score-RMSD correlations than the other three scoring functions. DITScoreRR will be of great value for the prediction and design of RNA structures and RNA–RNA complexes.
Organisms utilize gene regulatory networks (GRNs) to make fate decisions, but the regulatory mechanisms of transcription factors (TFs) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.