As interest in restoring tropical forests surges, so does the need for effective methods to ensure success. The framework species method (FSM) restores forest ecosystems by densely planting open sites, close to natural forest, with woody species, indigenous to the reference ecosystem and selected for their ability to accelerate ecological succession. Criteria for selecting framework species include: (i) representative of the reference forest ecosystem, (ii) tolerant of open conditions, (iii) ability to suppress weeds, (iv) attractiveness to seed-dispersing animals and (v) easily propagated. The method is effective where forest remnants and viable populations of seed dispersers remain. The origins and elements of the FSM are discussed. We review its adoption in 12 countries. Adherence to original principles was mostly high, but some misuse of the term was evident. The need for clearer definitions was identified. We place the FSM on a scale of restoration methods, matched with degradation levels and compare its establishment costs with those of other methods. Obstacles to its wider adoption, both technical and socio-economic, are discussed, along with how these might be overcome. Finally, the FSM is more clearly defined to facilitate its use in contributing towards the goals of the UN Decade on Restoration. This article is part of the theme issue ‘Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration’.
This paper describes an early example of Forest Landscape Restoration (FLR), which resulted from collaboration between a university, local community, and national park authority in the upper Mae Sa Valley, near Chiang Mai City, northern Thailand. Working together, the Hmong community of Ban Mae Sa Mai, Doi Suthep National Park Authority and Chiang Mai University’s Forest Restoration Research Unit (FORRU-CMU) established a chronosequence of trial restoration plots from 1996 to 2013, to test the framework-species method of forest restoration. The project developed successful restoration techniques and gained insights into the factors that influence villagers’ participation in forest restoration. Recovery of forest biomass, carbon storage, structure, biodiversity and ecological functioning exceeded expectations. Villagers appreciated the improved water security resulting from the project, as well as a better relationship with the park authority and increased land security. Recently, however, tree chopping and a breakdown in fire-prevention measures (perhaps symptoms of “project fatigue”) have threatened the sustainability of the plot system. The project demonstrates the importance of a sound scientific basis for forest restoration projects, long-term institutional support, and appropriate funding mechanisms, to achieve sustainability.
Soil seed banks have been used for investigation of natural regeneration of forests. In this study, we compared seed density and species composition of soil seed banks of trees among natural forests, restored forests of different ages, and abandoned agricultural land. The soil seed banks were collected from a natural forest (NF), 12-year-old and 17-year-old restoration sites (RF12y and RF17y), and 17-year-old abandoned site (AA) at Ban Mae Sa Mai, Chiang Mai, Thailand. A seedling emergence technique was used to assess seed density and species of emerged seedlings was identified. We found 5-8 tree species at each site. Seed densities in the study areas ranged from 43 to 298 seeds/m2. The seed density of RF12y was significantly higher than that of both NF and AA but not significantly different than RF17y (p < 0.01). Although there was no significant relationship between the restoration ages and the seed densities of the soil seed banks, the species composition of standing vegetation was related to the seed bank species. Sorensen’s similarities between the species composition of the soil seed banks and the existing trees in each area were between 0 and 13.79%, suggesting seed dispersal of both within and across study sites. Eight out of fourteen species in the soil seed banks were dispersed into restoration sites without standing vegetation of those species. Seven of those were animal-dispersed species. The selected native trees, framework species, attracted small seed dispersers into the study areas, especially at the restoration sites. This finding suggests that active forest restoration improved natural regeneration in restoration sites as well as neighboring areas via seed dispersal.
Restoring isolated patches of forest ecosystems in degraded landscapes could potentially lead to genetic loss and inbreeding. Therefore, this study determined the occurrence of genetic diversity among the tree species Castanopsis tribuloides, C. calathiformis, and Lithocarpus polystachyus all of which were proven previously to be effective native tree species in the restoration of upland evergreen forests in northern Thailand when using the seed sample collection method. We tested our hypothesis as to whether the genetic diversity of a plant population that had been planted from the seeds of 4–6 adult trees would be lower and whether incidences of fixation index (Fis) would be higher among the second generation seedlings of these three Fagaceae species in isolated forest restoration trial plots. Microsatellite primers were selected from the entire genome sequence of C. tribuloides and the genetic sequences of C. tribuloides, L. polystachyus, and C. calathiformis were analyzed. Our results indicated a high degree of genetic diversity (He) in C. tribuloides (0.736) and C. calathiformis (0.481); however, a low level of genetic diversity was observed in L. polystachyus (0.281) within the restored forest. The fixation index for the second generation of L. polystachyus and C. calathiformis in the restored forest showed evidence of inbreeding. These results imply the efficiency of the seed sample collection method and verify that it does not reduce the level of genetic diversity in C. tribuloides and C. calathiformis. However, it may result in incidences of an inbreeding phenomena, suggesting the need to increase the number of adult trees used at the seed collection stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.