Ocean variability plays an essential role in the climate system at different time scales through air–sea interactions. Recent studies have addressed the importance of the ocean mixed layer in cooling feedback to tropical cyclones (TCs). However, using constant sea surface temperature (SST) in short-range weather forecasts remains common, especially in high-resolution regional models. This study investigates the role of subsurface ocean mixing in the short-range forecast of non-TC extreme rainfall with the Weather Research and Forecast (WRF) model. In the simulations of 26 heavy rainfall cases, we found that using a one-dimensional mixed layer model leads to a 15% enhancement (reduction) of rainfall maximum in six (two) cases compared to using constant SST. When the initial depth of the mixed layer model is perturbed by the amount of daily variability, 13 cases exhibit larger than 15% increases or decreases. A detailed analysis of one case suggests that the radiative process dominates the overall response of SST. The warming and moistening of boundary layer air cause significant strengthening of updrafts in convection. Although the SST change in most cases due to varying mixed layer model setups is less than 0.5 K, convective motions in some cases are surprisingly sensitive to small changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.