Background The study aimed to introduce a machine learning model that predicts in-hospital mortality in patients on mechanical ventilation (MV) following moderate to severe traumatic brain injury (TBI). Methods A retrospective analysis was conducted for all adult patients who sustained TBI and were hospitalized at the trauma center from January 2014 to February 2019 with an abbreviated injury severity score for head region (HAIS) ≥ 3. We used the demographic characteristics, injuries and CT findings as predictors. Logistic regression (LR) and Artificial neural networks (ANN) were used to predict the in-hospital mortality. Accuracy, area under the receiver operating characteristics curve (AUROC), precision, negative predictive value (NPV), sensitivity, specificity and F-score were used to compare the models` performance. Results Across the study duration; 785 patients met the inclusion criteria (581 survived and 204 deceased). The two models (LR and ANN) achieved good performance with an accuracy over 80% and AUROC over 87%. However, when taking the other performance measures into account, LR achieved higher overall performance than the ANN with an accuracy and AUROC of 87% and 90.5%, respectively compared to 80.9% and 87.5%, respectively. Venous thromboembolism prophylaxis, severity of TBI as measured by abbreviated injury score, TBI diagnosis, the need for blood transfusion, heart rate upon admission to the emergency room and patient age were found to be the significant predictors of in-hospital mortality for TBI patients on MV. Conclusions Machine learning based LR achieved good predictive performance for the prognosis in mechanically ventilated TBI patients. This study presents an opportunity to integrate machine learning methods in the trauma registry to provide instant clinical decision-making support.
Background: The use of machine learning techniques to predict diseases outcomes has grown significantly in the last decade. Several studies prove that the machine learning predictive techniques outperform the classical multivariate techniques. We aimed to build a machine learning predictive model to predict the in-hospital mortality for patients who sustained Traumatic Brain Injury (TBI). Methods: Adult patients with TBI who were hospitalized in the level 1 trauma center in the period from January 2014 to February 2019 were included in this study. Patients' demographics, injury characteristics and CT findings were used as predictors. The predictive performance of Artificial Neural Networks (ANN) and Support Vector Machines (SVM) was evaluated in terms of accuracy, Area Under the Curve (AUC), sensitivity, precision, Negative Predictive Value (NPV), specificity and F-score. Results: A total of 1620 eligible patients were included in the study (1417 survival and 203 non-survivals). Both models achieved accuracy over 91% and AUC over 93%. SVM achieved the optimal performance with accuracy 95.6% and AUC 96%. Conclusions: for prediction of mortality in patients with TBI, SVM outperformed the well-known classical models that utilized the conventional multivariate analytical techniques.
We aimed to build a machine learning predictive model to predict the risk of prolonged mechanical ventilation (PMV) for patients with Traumatic Brain Injury (TBI). Methods This study included TBI patients who were hospitalized in a level 1 trauma center between January 2014 and February 2019. Data were analyzed for all adult patients who received mechanical ventilation following TBI with abbreviated injury severity (AIS) score for the head region of � 3. This study designed three sets of machine learning models: set A defined PMV to be greater than 7 days, set B (PMV > 10 days) and set C (PMV >14 days) to determine the optimal model for deployment. Patients' demographics, injury characteristics and CT findings were used as predictors. Logistic regression (LR), Artificial neural networks (ANN) Support vector machines (SVM), Random Forest (RF) and C.5 Decision Tree (C.5 DT) were used to predict the PMV. Results The number of eligible patients that were included in the study were 674, 643 and 622 patients in sets A, B and C respectively. In set A, LR achieved the optimal performance with accuracy 0.75 and Area under the curve (AUC) 0.83. SVM achieved the optimal performance among other models in sets B with accuracy/AUC of 0.79/0.84 respectively. ANNs achieved the optimal performance in set C with accuracy/AUC of 0.76/0.72 respectively. Machine learning models in set B demonstrated more stable performance with higher prediction success and discrimination power.
The trend towards distance learning has been increasing over the last few years, especially in the academic institutions. This increase is due to enabling technology that made learning materials accessible by students and professors at any location. Distance learning has different modes that can be applied according to the institution's needs. The two main modes of delivery are synchronously (all parts communicate at the same time) and asynchronously (delay in communications). The College of Engineering and Computer Science at the University of Central Florida (UCF) has been a leader in distance learning for the last 25 years. This was initiated by the Florida legislature by the creation of the Florida Engineering Education Delivery System. The goal of this system was to promote engineering education in the State of Florida. The early delivery system utilized video tapes and transitions to the internet in 2000. In spring 2007, the College of Engineering and Computer Science purchased a software based lecture recording and delivery system. This system was used to completely replace all existing recording hardware and software. The system launch included 90 faculty delivering 100 courses to 2300 engineering students. A study was conducted by the Center for Online and Virtual Education (COVE) at UCF. The primary purpose of this study was to assess the performance of the new system. The data was captured using an online questionnaire and it was analyze statistically by the center. The study was conducted on a population of students and faculty who had used the old and the new delivery systems. This paper shows the results of each category and gives an indication of the effect of using the new system on the students and the faculty performance. In this way we can address the critical factors that have a major impact on our students and faculty performance. In this paper, we describe the legacy system used for the past 25 years by UCF in addition to the requirements of a modern delivery system. The paper addresses the implementation and success of the new system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.