A novel triazole linkage that mimics the phosphodiester backbone in DNA was designed, synthesised and evaluated. Unlike previous work which utilised copper to form a 1,4 triazole linkage in the DNA backbone, a ruthenium catalyst was used to yield a 1,5 triazole. The artificial linkage was incorporated into a DNA backbone via a phosphoramidite building block using solid phase synthesis. The biophysical properties of DNA with a 1,5 triazole linkage in the backbone were evaluated by UV melting and circular dichroism and compared to DNA modified with previously reported 1,4 triazole linkages of various lengths.
Triazole linkages
(TLs) are mimics of the phosphodiester bond in
oligonucleotides with applications in synthetic biology and biotechnology.
Here we report the RuAAC-catalyzed synthesis of a novel 1,5-disubstituted
triazole (TL
2
) dinucleoside phosphoramidite as well as
its incorporation into oligonucleotides and compare its DNA polymerase
replication competency with other TL analogues. We demonstrate that
TL
2
has superior replication kinetics to these analogues
and is accurately replicated by polymerases. Derived structure–biocompatibility
relationships show that linker length and the orientation of a hydrogen
bond acceptor are critical and provide further guidance for the rational
design of artificial biocompatible nucleic acid backbones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.