Multidimensional multiple-stage tandem processing of ions is demonstrated successfully in a novel segmented linear ion trap. The enhanced performance is enabled by incorporating the entire range of ion activation methods into a single platform in a highly dynamic fashion. The ion activation network comprises external injection of reagent ions, radical neutral species, photons, electrons, and collisions with neutrals. Axial segmentation of the two-dimensional trapping field provides access to a unique functionality landscape through a system of purpose-designed regions for processing ions with maximum flexibility. Design aspects of the segmented linear ion trap, termed the Omnitrap platform, are highlighted, and motion of ions trapped by rectangular waveforms is investigated experimentally by mapping the stability diagram, tracing secular frequencies, and exploring different isolation techniques. All fragmentation methods incorporated in the Omnitrap platform involving radical chemistry are shown to provide complete sequence coverage for partially unfolded ubiquitin. Three-stage (MS3) tandem mass spectrometry experiments combining collision-induced dissociation of radical ions produced by electron meta-ionization and further involving two intermediate steps of ion isolation and accumulation are performed with high efficiency, producing information rich spectra with signal-to-noise levels comparable to those obtained in a two-stage (MS2) experiment. The advanced capabilities of the Omnitrap platform to provide in-depth top-down MSn characterization of proteins are portrayed. Performance is further enhanced by connecting the Omnitrap platform to an Orbitrap mass analyzer, while successful integration with time-of-flight analyzers has already been demonstrated.
An experimental study has been conducted to examine the interaction of shock wave induced vortices with a flat plate and a perforated plate. The experiments were carried out using a 30 mm internal diameter shock-tube at Mach numbers 1.31, 1.49, and 1.61 under critical driver conditions. Air was used both in the driver and driven sections. High-speed schlieren photography was employed to study the flow development and the resulting interactions with the plates. Wall pressure measurements on both plates were also carried out in order to study the flow interactions quantitatively. The experimental results indicated that a region of strong flow development is generated near the wall surface, due to the flow interactions of reflected waves and oncoming induced vortices. This flow behavior causes the generation of multiple pressure fluctuations on the wall. In the case of the perforated plate, a weaker initial reflected wave is produced, which is followed by compression waves, due to the internal reflections within the plate. The transmitted wave is reduced in strength, compared to the initial incident shock wave.
The paper reports an experimental study of impingement cooling in a rotating passage of semi-cylindrical cross section. Cooling fluid is injected from a row of five jet holes along the centerline of the flat surface of the passage and strikes the concave surface. The cooling passage rotates orthogonally about an axis parallel to that of the jets. Tests have been carried out, using water, both within the passage and as the jet fluid, at a fixed Reynolds number of 15,000, for clockwise and counter-clockwise rotation. Local Nusselt number measurements, using the liquid-crystal technique, show that under stationary conditions a high Nusselt number region develops around each impingement point, with secondary peaks half-way between impingement points. Rotation reduces heat transfer, leads to the disappearance of all secondary peaks and also, surprisingly, of some of the primary peaks. Flow visualization tests suggest that these changes in thermal behavior are caused because rotation increases the spreading rate of the jets. LDA and PIV measurements are also presented. They show that under stationary conditions the five jets exhibit a similar behavior, with their cores remaining intact up to the point of impingement at the top dead center. The LDA and PIV studies help explain the rather surprising thermal behavior under rotating conditions.
How bacteria are able to maintain their size remains an open question. Techniques that can measure the biomass (dry mass) of single cells with high precision and high-throughput are demanded to elucidate this question. Here, we present a technological approach that combines the transport, guiding and focusing of individual bacteria from solution to the surface of an ultrathin silicon nitride membrane resonator in vacuum. The resonance frequencies of the membrane undergo abrupt variations at the instants where single cells land on the membrane surface. The resonator design displays a quasi-symmetric rectangular shape with an extraordinary capture area of 0.14 mm2, while maintaining a high mass resolution of 0.7 fg (1 fg = 10−15 g) to precisely resolve the dry mass of single cells. The small rectangularity of the membrane provides unprecedented frequency density of vibration modes that enables to retrieve the mass of individual cells with high accuracy by specially developed inverse problem theory. We apply this approach for profiling the dry mass distribution in Staphylococcus epidermidis and Escherichia coli cells. The technique allows the determination of the dry mass of single bacterial cells with an accuracy of about 1% at an unparalleled throughput of 20 cells/min. Finally, we revisit Koch & Schaechter model developed during 60 s to assess the intrinsic sources of stochasticity that originate cell size heterogeneity in steady-state populations. The results reveal the importance of mass resolution to correctly describe these mechanisms.
The paper reports an experimental study of impingement cooling in a rotating passage of semi-cylindrical cross-section. Cooling fluid is injected from a row of five jet holes along the centerline of the flat surface of the passage and strikes the concave surface. The cooling passage rotates orthogonally about an axis parallel to that of the jets. Tests have been carried out, using water, both within the passage and as the jet fluid, at a fixed Reynolds number of 15,000, for clockwise and anti-clockwise rotation. Local Nusselt number measurements, using the liquid-crystal technique, show that under stationary conditions a high Nusselt number region develops around each impingement point, with secondary peaks half-way between impingement points. Rotation reduces heat transfer, leads to the disappearance of all secondary peaks and also, surprisingly, of some of the primary peaks. Flow visualization tests suggest that these changes in thermal behavior are caused because rotation increase the spreading rate of the jets. LDA and PIV measurements are also presented. They show that under stationary conditions the five jets exhibit a similar behavior, with their cores remaining intact up to the point of impingement at the top dead center. The LDA and PIV studies help explain the rather surprising thermal behavior under rotating conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.