Salah satu jenis pelabelan pada graf adalah pelabelan jarak yang merupakan pelabelan graf berdasarkan jarak antara titik-titiknya. Pelabelan jarak ini disebut distance magic labeling (pelabelan ajaib jarak) jika setiap titik mempunyai bobot pelabelan jarak yang sama. Pelabelan jarak ini disebut distance antimagic labeling (pelabelan anti ajaib jarak) jika setiap titik mempunyai bobot pelabelan jarak yang berbeda. Yang membentuk suatu deret. Tulisan ini membahas tentang pelabelan anti ajaib jarak pada graf petersen diperumum yaitu G= P(n, m) dengan n ≥ 3, 1 ≤ m <n/2 suatu graf teratur berderajat 3 yang mempunyai 2n titik dan 3n sisi. Lebih lanjut, tulisan ini juga membahas tentang pelabelan (a,d)-anti ajaib jarak -{1} pada suatu graf petersen diperumum.
In the current era, data security disturbances often occur, such as data theft by unwanted people. To overcome security problems can be handled using cryptography and steganography methods. The cryptography process generates random writing that can obscure the message making it difficult for others to read. However, cryptography itself is still too weak to secure messages, so steganography is needed to disguise the existence of the message so that it is not visible to the human eye. Apart from hiding messages, another goal is to know the impact of message insertion. In this study, the encryption steps were followed by insertion and decryption followed by extraction. In the secret message encryption process using two algorithms, namely Vigenere Cipher and Playfair Cipher. In the process of inserting a secret message using Least Significant Bit (LSB) steganography. The results of the combination of cryptography and steganography are able to secure secret messages without causing significant changes even though the digital image used before and after the steganography process has increased in size, the Mean Square Error (MSE) value obtained is 0.000136 and the Peak Signal to Noise Ratio (PSNR) value is obtained. 86.8062 dB and the result of message encryption is enough to obscure the relationship pattern in the modified secret message with an avalanche effect value of 53.06%.
Kata kunciKekuatan tak beraturan sisi total Graf hasil gabungan graf lingkaran dan graf lintasan Graf hasil gabungan dua graf lingkaran KeywordsThe Total Random Side Strength Value Combination of Circle Graph and Line Graph Combination of Two Circle Graph Penelitian ini bertujuan untuk menentukan nilai kekuatan tak beraturan sisi total pada graf hasil gabungan graf lingkaran dengan graf lintasan dan graf hasil gabungan dua graf lingkaran masing-masing untuk n sama dengan 3. Pelabelan tak beraturan sisi total pada graf, dengan himpunan titik tak kosong V dan himpunan sisi E suatu fungsi, sehingga bobot setiap sisinya berbeda. Nilai k terkecil pada pelabelan tak beraturan sisi total disebut kekuatan tak beraturan sisi total dari G yang dinotasikan dengan tes G. Selanjutnya, bobot sebuah sisi uv dengan fungsi pelabelan. Berdasarkan pembahasan, dapat disimpulkan bahwa nilai kekuatan tak beraturan sisi total pada graf hasil gabungan graf lingkaran dengan graf lintasan dan graf hasil gabungan dua graf lingkaran yang berturut-turut mempunyai nilai n sama dengan 3.This study aims to determine the irregular strength value of the total side irregular strength of the combined circular graph with the path graph and the combined graph of two circle graphs each for n is equal to 3. Irregular labeling of total sides of the graph, with a set of non-empty points V and the set of sides E of a function, so that the weight of each side is different. The smallest k value on total side irregular labeling is called the total side irregular strength of G denoted by the G test. Next, the weight of a side uv with the labeling function. Based on the discussion, it can be concluded that the total side irregular strength value of the combined circular graph with the path graph and the combined graph of two circle graphs, respectively, have a value of n equal to 3.This is an open access article under the CC-BY-SA license.
A distance vertex irregular total k-labeling of a simple undirected graph G = G(V, E), is a function f : V (G) ∪ E(G) −→ {1, 2, . . . , k} such that for every pair vertices u, v ∈ V (G) and u ̸ = v, the weights of u and v are distinct. The weight of vertex v ∈ V (G) is defined to be the sum of the label of vertices in neighborhood of v and the label of all incident edges to v. The total distance vertex irregularity strength of G (denoted by tdis(G)) is the minimum of k for which G has a distance vertex irregular total k-labeling. In this paper, we present several results of the total distance vertex irregularity strength of some corona product graphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.