Numerous studies have suggested a positive correlation between spatial and population densities. However, few have systematically conducted quantitative analysis and deciphered the detailed correlation in block scale. Here, we construct a population–space correlation algorithm to quantify and compare the correlation between mobile phone signalling data and vector spatial data and identify blocks with uneven population density. We analyse the influences of various urban spatial characteristics on population density and the distribution characteristics of the identified city blocks. Changzhou City, China, was selected as the study case. The results indicate that (1) population density distribution is unbalanced only when spatial density exceeds a critical value, reflecting the level and sphere of influence of blocks with varying spatial densities; (2) low population density distribution is concentrated in the zonal space, along the boundary between primary and secondary urban centres; (3) spatial characteristics affecting population density distribution vary with the type of block, and the green landscape’s attractiveness is reduced. Our study provides a novel perspective on quantifying the link between urban form and population distribution. It can help decision-makers and planners in accurately recommending urban intervention in population density distribution by adjusting the spatial morphology and promoting rational use of urban public resources.
The urban construction land change is the most obvious and complex spatial phenomenon in urban agglomerations which has attracted extensive attention of scholars in different fields. Yangtze River Delta Urban Agglomeration is the most mature urban agglomeration in China, a typical representative in both China and the world. This paper analyzes the evolution dynamic, effect and governance policy of urban construction land in Yangtze River Delta Urban Agglomeration 2011–2020 using a combination of BCG model, decoupling model and GIS tools. The findings are as follows. (1) There are large intercity differences in urban construction land in urban agglomerations, but the spatial heterogeneity is gradually decreasing. (2) The change trends and evolution patterns of urban construction land in urban agglomerations are increasingly diversified, with emergence of a variety of types such as rapid growth, slow growth, inverted U-shape, stars, cows, question and dogs. (3) The population growth, economic development and income improvement corresponding to the change of urban construction land in urban agglomerations have no desirable effect, with most cities in the expansive negative decoupling state. (4) The decoupling types show increasingly complex changes, in evolution, degeneration and unchanged states. Affected by economic transformation and the outbreak of COVID-19, an increasing number of cities are in strong negative decoupling and degeneration states, threatening the sustainable development of urban agglomerations. (5) Based on the division of urban agglomerations into three policy areas of Transformation Leading, Land Dependent, and Land Reduction, the response strategies for each are proposed, and a differentiated land use zoning management system is established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.