Pronominal anaphors are commonly observed in written texts. In this article, effective Chinese pronominal anaphora resolution is addressed by using lexical knowledge acquisition and salience measurement. The lexical knowledge acquisition is aimed to extract more semantic features, such as gender, number, and collocate compatibility by employing multiple resources. The presented salience measurement is based on entropybased weighting on selecting antecedent candidates.The resolution is justified with a real corpus and compared with a rule-based model. Experimental results by five-fold cross-validation show that our approach yields 82.5% success rate on 1343 anaphoric instances. In comparison with a general rule-based approach, the performance is improved by 7%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.