It is inevitable that Connected and Autonomous Vehicles (CAVs) will be a major focus of transportation and the automotive industry with increased use in future traffic system analysis. Numerous studies have focused on the evaluation and potential development of CAVs technology; however, pedestrians and bicyclists, as two essential and important modes of the road users have seen little to no coverage. In response to the need for analyzing the impact of CAVs on non-motorized transportation, this paper develops a new model for the evaluation of the Level of Service (LOS) for pedestrians in a CAVs environment based on the Highway Capacity Manual (HCM). The HCM provides a methodology to assess the level of service for pedestrians and bicyclists on various types of intersections in urban areas. Five scenarios were created for simulation via VISSIM (a software) that corresponds to the different proportions of the CAVs and different signal systems in a typical traffic environment. Alternatively, the Surrogate Safety Assessment Model (SSAM) was selected for analyzing the safety performance of the five scenarios. Through computing and analyzing the results of simulation and SSAM, the latter portion of this paper focuses on the development of a new model for evaluating pedestrian LOS in urban areas which are based upon HCM standards which are suitable for CAVs environments. The results of this study are intended to inform the future efforts of engineers and/or policymakers and to provide them with a tool to conduct a comparison of capacity and LOS related to the impact of CAVs on pedestrians during the process of a transportation system transition to CAVs.
Bluetooth technology emerged over twenty years ago and has continuously improved throughout the years to meet diverse and complex applications. Initially invented to replace the need for physical data cables, Bluetooth offers users a quick and easy way to share data files over a wireless network. Traffic engineers and transportation engineering researchers have utilized the potential opportunities that exist with Bluetooth and have implemented this technology into traffic monitoring techniques. To gain a better understanding of Bluetooth sensors and how they work, a comprehensive literature search was conducted. Twenty-five articles were studied regarding case studies of Bluetooth sensor implementation for travel time measurement. Besides reviewing the literature and previous case studies, three new case studies in the State of Delaware, USA, were also conducted and carefully analyzed. The benefits and drawbacks associated with Bluetooth technology for travel time measurements have been identified in this paper. The overall conclusion of the authors is Bluetooth alone and by itself is not a proper technology for travel time measurements. More studies need to be conducted on the accuracy and overall application, before one can confidently utilize the Bluetooth technology for travel time measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.