Understanding hydrological processes in large, open areas, such as catchments, and further modelling these processes are still open research questions. The system proposed in this work provides an automatic end-to-end pipeline from data collection to information extraction that can potentially assist hydrologists to better understand the hydrological processes using a data-driven approach. In this work, the performance of a low-cost off-the-shelf self contained sensor unit, which was originally designed and used to monitor liquid levels, such as AdBlue, fuel, lubricants etc., in a sealed tank environment, is first examined. This process validates that the sensor does provide accurate water level information for open water level monitoring tasks. Utilising the dataset collected from eight sensor units, an end-to-end pipeline of automating the data collection, data processing and information extraction processes is proposed. Within the pipeline, a data-driven anomaly detection method that automatically extracts rapid changes in measurement trends at a catchment scale. The lag-time of the test site (Dodder catchment Dublin, Ireland) is also analyzed. Subsequently, the water level response in the catchment due to storm events during the 27 month deployment period is illustrated. To support reproducible and collaborative research, the collected dataset and the source code of this work will be publicly available for research purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.