Wide plate testing has been traditionally applied to evaluate the tensile strain capacity (TSC) of pipelines with girth weld flaws. These wide plate tests cannot incorporate the effect of internal pressure, however, numerical analysis in recent studies showed that the TSC is affected by the level of internal pressure inside the pipeline (Wang et al. 2007, "Strain Based Design of High Strength Pipelines," 17th International Offshore and Polar Engineering Conference (ISOPE), Lisbon, Portugal, Vol. 4, pp. 3186–3193). Moreover, most of the past studies focused on the effect of circumferential flaws on the TSC for pipelines of steel grade X65 or higher. The current Oil and Gas Pipeline System Code CSA Z662-11 provides equations to predict the TSC as a function of geometry and material properties of the pipelines. These equations were based on extensive studies on pipes having grades X65 or higher without considering the effect of internal pressure. This paper investigates the TSC for pipelines obtained using an experimental technique considering the effect of internal pressure and flaw size. Eight full-scale tests of X52 NPS 12 in. pipes with 6.91 mm wall thickness were conducted in order to investigate the effect of circumferential flaws close to a girth weld on the TSC for vintage pipelines subjected to eccentric tensile forces and internal pressure. The tensile strains along the pipe length and on the outer circumference of the pipe were measured using biaxial strain gauges and a digital image correlation (DIC) system. Postfailure macrofractography analysis was used to confirm the original size of the machined flaw and to identify areas of plastic deformation and brittle/ductile fracture surfaces. From the experimental and numerical results, the effect of internal pressure and flaw size on the TSC and the crack mouth opening displacement (CMOD) at failure were investigated and presented.
Pipe elbows are frequently used in a pipeline system to change the directions. Thermal expansion and internal pressure results in bending moments on the bends causing ovalization of the initial circular cross-section. The ability of the bend to ovalize will result in an increase in the bend flexibility when compared to straight pipes [1]. In case of bends subjected to internal pressure, the pipe will start to straighten out due to the difference between the intrados and extrados surface areas. The internal pressure causes unbalanced thrust forces tending to open up the elbow depending on its stiffness and surrounding constraints. These forces tending to cause ovalization of the cross section and causing the tendency of pipe bends to open up are termed the “Bourdon effect”. If these unbalanced thrust forces are not taken into consideration, unanticipated deformations and high stress levels could occur at the elbow location that may not be accounted for in traditional stress analysis [2]. A better understanding of the influence of the Bourdon effect on the elbow design parameters is required. Past studies have investigated the behaviour of pipe elbows under closing bending moment and proposed factors that account for the increased flexibility and high stress levels resulted from ovalization. These factors are used in the current design codes [3],[4] &[5] and known as the flexibility factor and stress intensification factor. In this investigation, pipe elbows with different nominal pipe size and various bend radiuses to internal pipe radius ratios (R/r) are studied to get a better understanding of the Bourdon effect and its influence on the pipe stresses and deformations. Differential equilibrium equations are solved to derive a mathematical model to evaluate the unbalanced thrust forces resulted from the Bourdon effect on a pipe elbow. The forces evaluated from the derived model are compared to finite element model results and showed excellent agreement. A comparison between the CSA-Z662 code and the FEA results is conducted to investigate the applicability of the stress intensification factors used in the current design code for different loading cases. The study showed that the external bending moment direction acting on the pipe has a significant effect on the distribution of stresses on the pipe elbow and significantly depending on the level of applied internal pressure.
Pipe bends are frequently used to change the direction in pipeline systems and they are considered one of the critical components as well. Bending moments acting on the pipe bends result from the surrounding environment, such as thermal expansions, soil deformations, and external loads. As a result of these bending moments, the initially circular cross-section of the pipe bend deforms into an oval shape. This consequently changes the pipe bend’s flexibility leading to higher stresses compared to straight pipes. Past studies considered the case of a closing in-plane bending moment on 90-degree pipe bends and proposed factors that account for the increased flexibility and high-stress levels. These factors are currently presented in the design codes and known as the flexibility and stress intensification factors (SIF). This paper covers the behaviour of an initially circular cross-sectional smooth pipe bend of uniform thickness subjected to in-plane opening/closing bending moment. ABAQUS FEA software is used in this study to model pipe bends with different nominal pipe sizes, bend angles, and various bend radius to cross-sectional pipe radius ratios. A comparison between the CSA-Z662 code and the FEA results is conducted to investigate the applicability of the currently used SIF factor presented in the design code for different loading cases. The study showed that the in-plane bending moment direction acting on the pipe has a significant effect on the stress distribution and the flexibility of the pipe bend. The variation of bend angle and bend radius showed that it affects the maximum stress drastically and should be considered as a parameter in the flexibility and SIF factors. Moreover, the CSA results are found to be un-conservative in some cases depending on the bend angle and direction of the applied bending moment.
The harsh environment in high-temperature geothermal wells poses significant challenges to casing integrity. As alternatives to Oil Country Tubular Goods (OCTG) materials, titanium alloys have shown great corrosion resistance in geothermal wells. However, little work has been done to investigate the structural performance and sealability of titanium alloy casing and casing connections. Using advanced Finite Element Analysis (FEA), an engineering study was performed to evaluate the sealability of a premium casing connection with a proprietary titanium alloy material. Coupon tests were conducted to characterize the temperature-dependent mechanical response of the titanium alloy as the key inputs for the study. Thermal cycle loading representative of geothermal well conditions was applied to the FEA model to quantitively evaluate the connection sealability performance. The advantage of the sealability performance of the titanium alloy connection was demonstrated by comparing the model response of the titanium alloy connection to the same connection design with L80 material that was previously qualified for this application by full-scale physical testing. The titanium alloy connection showed a much more stable sealability response when compared to the L80 connection throughout the thermal cycles. This superior performance was primarily attributed to the elastic response of the pipe body, relatively low thermal stress, and minimal plastic deformation within the connection. Preliminary physical make-and-break test results were also shown to demonstrate the galling resistance of several connection types made of the titanium alloy. The engineering study established a strong technical basis for further development of casing and premium casing connections with titanium alloys for challenging high-temperature geothermal well applications. The technical information in this paper provides a reference for high-temperature geothermal and thermal well operators who are considering alternative materials to improve casing integrity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.