The low-cost multimodal platform BITalino is being increasingly used for educational and research purposes. However, there is still a lack of well-structured work comparing data acquired by this toolkit against a reference device, using established experimental protocols. This work intends to fill the said gap by benchmarking the performance of BITalino against the BioPac MP35 Student Lab Pro device. This work followed a methodical experimental protocol to acquire data from the two devices simultaneously. Four physiological signals were acquired: electrocardiography, electromyography, electrodermal activity and electroencephalography. Root mean square error and coefficient of determination were computed to analyse differences between BITalino and BioPac. Electrodermal activity signals were very similar for the two devices, even without applying any major signal processing techniques. For electrocardiography, a simple morphological comparison also revealed high similarity between devices, and this similarity increased after a common segmentation procedure was followed. Regarding electromyography and electroencephalography data, the approach consisted of comparing features extracted using common post-processing methods. The differences between BITalino and BioPac were again small. Overall, the results presented here show a close similarity between data acquired by the BITalino and by the reference device. This is an important validation step for all researchers working with this multimodal platform.
Low-cost hardware platforms for biomedical engineering are becoming increasingly available, which empower the research community in the development of new projects in a wide range of areas related with physiological data acquisition. Building upon previous work by our group, this work compares the quality of the data acquired by means of two different versions of the multimodal physiological computing platform BITalino, with a device that can be considered a reference. We acquired data from 5 sensors, namely Accelerometry (ACC), Electrocardiography (ECG), Electroencephalography (EEG), Electrodermal Activity (EDA) and Electromyography (EMG). Experimental evaluation shows that ACC, ECG and EDA data are highly correlated with the reference in what concerns the raw waveforms. When compared by means of their commonly used features, EEG and EMG data are also quite similar across the different devices.
Atrial fibrillation (AF) is the most common type of arrhythmia. This work presents a pattern analysis approach to automatically classify electrocardiographic (ECG) records as normal sinus rhythm or AF. Both spectral and time domain features were extracted and their discrimination capability was assessed individually and in combination. Spectral features were based on the wavelet decomposition of the signal and time parameters translated heart rate characteristics. The performance of three classifiers was evaluated: k-nearest neighbour (kNN), artificial neural network (ANN) and support vector machine (SVM). The MIT-BIH arrhythmia database was used for validation. The best results were obtained when a combination of spectral and time domain features was used. An overall accuracy of 99.08 % was achieved with the SVM classifier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.