Optogenetics is a modern technique which has been recently expanded to non-neuronal cell types, e.g., astrocytes, and involves targeted gene delivery of light-sensitive ion channels like Channelrhodopsin-2 (ChR2). Optogenetic regulation of astrocytic activity can be used for therapeutic intervention of several neurological disorders. Astrocytic gene delivery, viz adeno-associated viral (AAV) vectors, have proven to be robust, time-, and cost-efficient contrary to the generation of transgenic animal models. When transducing astrocytes with an AAV vector, it is imperative to perform a serotype evaluation of the AAV vector due to variability in serotype transduction efficiency depending on species, target region and construct length. Rats have been a very successful animal model for studying a variety of brain disorders, from which ChR2-based intervention of astrocytes will benefit. However, the most efficient AAV capsid serotype targeting astrocytes for ChR2 expression in the in vivo rat brain cortex has not been characterized. To address this, we have evaluated AAV serotypes 1, 5, and 8 of the vector AAV-GFAP-hChR2(H134)-mCherry targeting astrocytes in the rat brain neocortex. Results show that serotype 8 exhibits promising transduction patterns, as it has demonstrated the highest tangential and radial viral spread in the rat brain. Our research will facilitate translational research for future applications of optogenetics involving the transduction of rat brain cortical astrocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.