Deceit occurs in daily life and, even from an early age, children can successfully deceive their parents. Therefore, numerous book and psychological studies have been published to help people decipher the facial cues to deceit. In this study, we tackle the problem of deceit detection by analyzing eye movements: blinks, saccades and gaze direction. Recent psychological studies have shown that the non-visual saccadic eye movement rate is higher when people lie. We propose a fast and accurate framework for eye tracking and eye movement recognition and analysis. The proposed system tracks the position of the iris, as well as the eye corners (the outer shape of the eye). Next, in an offline analysis stage, the trajectory of these eye features is analyzed in order to recognize and measure various cues which can be used as an indicator of deception: the blink rate, the gaze direction and the saccadic eye movement rate. On the task of iris center localization, the method achieves within pupil localization in 91.47% of the cases. For blink localization, we obtained an accuracy of 99.3% on the difficult EyeBlink8 dataset. In addition, we proposed a novel metric, the normalized blink rate deviation to stop deceitful behavior based on blink rate. Using this metric and a simple decision stump, the deceitful answers from the Silesian Face database were recognized with an accuracy of 96.15%.
The accurate extraction and measurement of eye features is crucial to a variety of domains, including human-computer interaction, biometry, and medical research. This paper presents a fast and accurate method for extracting multiple features around the eyes: the center of the pupil, the iris radius, and the external shape of the eye. These features are extracted using a multistage algorithm. On the first stage the pupil center is localized using a fast circular symmetry detector and the iris radius is computed using radial gradient projections, and on the second stage the external shape of the eye (of the eyelids) is determined through a Monte Carlo sampling framework based on both color and shape information. Extensive experiments performed on a different dataset demonstrate the effectiveness of our approach. In addition, this work provides eye annotation data for a publicly-available database.
Micro-expressions play an essential part in understanding non-verbal communication and deceit detection. They are involuntary, brief facial movements that are shown when a person is trying to conceal something. Automatic analysis of micro-expression is challenging due to their low amplitude and to their short duration (they occur as fast as 1/15 to 1/25 of a second). We propose a fully micro-expression analysis system consisting of a high-speed image acquisition setup and a software framework which can detect the frames when the micro-expressions occurred as well as determine the type of the emerged expression. The detection and classification methods use fast and simple motion descriptors based on absolute image differences. The recognition module it only involves the computation of several 2D Gaussian probabilities. The software framework was tested on two publicly available high speed micro-expression databases and the whole system was used to acquire new data. The experiments we performed show that our solution outperforms state of the art works which use more complex and computationally intensive descriptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.