T effector cells promote inflammation in asthmatic patients, and both Th2 and Th17 CD4 T cells have been implicated in severe forms of the disease. The metabolic phenotypes and dependencies of these cells, however, remain poorly understood in the regulation of airway inflammation. In this study, we show the bronchoalveolar lavage fluid of asthmatic patients had markers of elevated glucose and glutamine metabolism. Further, peripheral blood T cells of asthmatics had broadly elevated expression of metabolic proteins when analyzed by mass cytometry compared with healthy controls. Therefore, we hypothesized that glucose and glutamine metabolism promote allergic airway inflammation. We tested this hypothesis in two murine models of airway inflammation. T cells from lungs of mice sensitized with Alternaria alternata extract displayed genetic signatures for elevated oxidative and glucose metabolism by single-cell RNA sequencing. This result was most pronounced when protein levels were measured in IL-17–producing cells and was recapitulated when airway inflammation was induced with house dust mite plus LPS, a model that led to abundant IL-4– and IL-17–producing T cells. Importantly, inhibitors of the glucose transporter 1 or glutaminase in vivo attenuated house dust mite + LPS eosinophilia, T cell cytokine production, and airway hyperresponsiveness as well as augmented the immunosuppressive properties of dexamethasone. These data show that T cells induce markers to support metabolism in vivo in airway inflammation and that this correlates with inflammatory cytokine production. Targeting metabolic pathways may provide a new direction to protect from disease and enhance the effectiveness of steroid therapy.
IL-17R signaling is required for control of extracellular pathogens and is also implicated in development of chronic inflammatory processes. The response to the human pathogen Helicobacter pylori results in Th1 and Th17 cell activation and a chronic inflammatory process that can lead to adverse outcomes, such as gastric cancer. Previously, we identified IL-17RA as a requirement for the recruitment of neutrophils and control of H. pylori colonization in the gastric mucosa. Unexpectedly, H. pylori-infected Il17ra À/À mice had significantly more chronic inflammation than H. pylori-infected wild-type mice. In this study, human epithelial cell lines and murine models were used to investigate differential roles for IL-17A, IL-17F, and IL-17A/F during H. pylori infection. Moreover, the hypothesis that IL-17RA signaling, specifically in lymphocytes, provides an autocrine feedback loop that downregulates Th17 cytokine production was investigated. The data indicate that epithelial cells exhibit a stronger response to IL-17A and IL-17A/F than IL-17F, and that IL-17A and IL-17A/F can synergize with TNF and IL-22 to induce antimicrobial genes of gastric epithelial cells. In vivo deficiencies of IL-17A or IL-17F alone did not significantly change the immunopathological response to H. pylori, but if both cytokines were absent, a hyperinflammatory lymphocytic response developed. Using a cre/flox targeting approach for IL-17RA combined with infection, our findings demonstrate that increased chronic inflammation in Il17ra À/À mice was not attributed to a T cell-intrinsic defect. These data imply that IL-17A and IL-17F may have overlapping roles in maintenance of the gastric mucosal response to infection. ImmunoHorizons, 2022, 6: 116-129.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.