Purpose: Neuroendocrine prostate cancer (NEPC) is an aggressive form of castration-resistant prostate cancer (CRPC) for which effective therapies are lacking. We previously identified carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) as a promising NEPC cell surface antigen. Here we investigated the scope of CEACAM5 expression in end-stage prostate cancer, the basis for CEACAM5 enrichment in NEPC, and the therapeutic potential of the CEACAM5 antibody–drug conjugate labetuzumab govitecan in prostate cancer. Experimental Design: The expression of CEACAM5 and other clinically relevant antigens was characterized by multiplex immunofluorescence of a tissue microarray comprising metastatic tumors from 34 lethal metastatic CRPC (mCRPC) cases. A genetically defined neuroendocrine transdifferentiation assay of prostate cancer was developed to evaluate mechanisms of CEACAM5 regulation in NEPC. The specificity and efficacy of labetuzumab govitecan was determined in CEACAM5+ prostate cancer cell lines and patient-derived xenografts models. Results: CEACAM5 expression was enriched in NEPC compared with other mCRPC subtypes and minimally overlapped with prostate-specific membrane antigen, prostate stem cell antigen, and trophoblast cell surface antigen 2 expression. We focused on a correlation between the expression of the pioneer transcription factor ASCL1 and CEACAM5 to determine that ASCL1 can drive neuroendocrine reprogramming of prostate cancer which is associated with increased chromatin accessibility of the CEACAM5 core promoter and CEACAM5 expression. Labetuzumab govitecan induced DNA damage in CEACAM5+ prostate cancer cell lines and marked antitumor responses in CEACAM5+ CRPC xenograft models including chemotherapy-resistant NEPC. Conclusions: Our findings provide insights into the scope and regulation of CEACAM5 expression in prostate cancer and strong support for clinical studies of labetuzumab govitecan for NEPC.
Professional antigen-presenting cells (APC; myeloid dendritic cells [DC] and macrophages [MΦ]; B lymphocytes) mediate highly efficient HIV-1 infection of CD4+ T cells, termed trans infection, that could contribute to HIV-1 pathogenesis. We have previously shown that lower cholesterol content in DC and B lymphocytes is associated with a lack of HIV-1 trans infection in HIV-1-infected nonprogressors (NP). Here, we assessed whether HIV-1 trans infection mediated by another major APC, MΦ, is deficient in NP due to altered cholesterol metabolism. When comparing healthy HIV-1 seronegatives (SN), rapid progressors (PR), and NP, we found that monocyte-derived MΦ from NP did not mediate HIV-1 trans infection of autologous CD4+ T cells, in contrast to efficient trans infection mediated by SN and PR MΦ. MΦ trans infection efficiency was directly associated with the number of DC-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN)-expressing MΦ. Significantly fewer NP MΦ expressed DC-SIGN. Unesterified (free) cholesterol in MΦ cell membranes and lipid rafting was significantly lower in NP than PR, as was virus internalization in early endosomes. Furthermore, simvastatin (SIMV) decreased the subpopulation of DC-SIGN+ MΦ as well as cis and trans infection. Notably, SIMV decreased cell membrane cholesterol and led to lipid raft dissociation, effectively mimicking the incompetent APC trans infection environment characteristic of NP. Our data support that DC-SIGN and membrane cholesterol are central to MΦ trans infection, and a lack of these limits HIV-1 disease progression. Targeting the ability of MΦ to drive HIV-1 dissemination in trans could enhance HIV-1 therapeutic strategies.IMPORTANCE Despite the success of combination antiretroviral therapy, neither a vaccine nor a cure for HIV infection has been developed, demonstrating a need for novel prophylactic and therapeutic strategies. Here, we show that efficiency of MΦ-mediated HIV trans infection of CD4+ T cells is a unique characteristic associated with control of disease progression, and it is impaired in HIV-infected NP. In vitro treatment of MΦ from healthy donors with SIMV lowers their cholesterol content, which results in a strongly reduced trans infection ability, similar to the levels of MΦ from NP. Taken together, our data support the hypothesis that MΦ-mediated HIV-1 trans infection plays a role in HIV infection and disease progression and demonstrate that the use of SIMV to decrease this mechanism of virus transfer should be considered for future HIV therapeutic development.
The predominant types of dendritic cells (DC) in the skin and mucosa are Langerhans cells (LC) and interstitial dermal DC (iDDC). LC and iDDC process cutaneous antigens and migrate out of the skin and mucosa to the draining lymph nodes to present antigens to T and B cells. Because of the strategic location of LC and iDDC and the ability of these cells to capture and process pathogens, we hypothesized that they could be infected with human herpesvirus 8 (HHV-8) (Kaposi's sarcoma [KS]-associated herpesvirus) and have an important role in the development of KS. We have previously shown that HHV-8 enters monocyte-derived dendritic cells (MDDC) through DC-SIGN, resulting in nonproductive infection. Here we show that LC and iDDC generated from pluripotent cord blood CD34+ cell precursors support productive infection with HHV-8. Anti-DC-SIGN monoclonal antibody (MAb) inhibited HHV-8 infection of iDDC, as shown by low expression levels of viral proteins and DNA. In contrast, blocking of both langerin and the receptor protein tyrosine kinase ephrin A2 was required to inhibit HHV-8 infection of LC. Infection with HHV-8 did not alter the cell surface expression of langerin on LC but downregulated the expression of DC-SIGN on iDDC, as we previously reported for MDDC. HHV-8-infected LC and iDDC had a reduced ability to stimulate allogeneic CD4+ T cells in the mixed-lymphocyte reaction. These results indicate that HHV-8 can target both LC and iDDC for productive infection via different receptors and alter their function, supporting their potential role in HHV-8 pathogenesis and KS.IMPORTANCE Here we show that HHV-8, a DNA tumor virus that causes Kaposi's sarcoma, infects three types of dendritic cells: monocyte-derived dendritic cells, Langerhans cells, and interstitial dermal dendritic cells. We show that different receptors are used by this virus to infect these cells. DC-SIGN is a major receptor for infection of both monocyte-derived dendritic cells and interstitial dermal dendritic cells, yet the virus fully replicates only in the latter. HHV-8 uses langerin and the ephrin A2 receptor to infect Langerhans cells, which support full HHV-8 lytic replication. This infection of Langerhans cells and interstitial dermal dendritic cells results in an impaired ability to stimulate CD4+ helper T cell responses. Taken together, our data show that HHV-8 utilizes alternate receptors to differentially infect and replicate in these tissue-resident DC and support the hypothesis that these cells play an important role in HHV-8 infection and pathogenesis.
Tissue-specific antigens can serve as targets for adoptive T cell transfer-based cancer immunotherapy. Recognition of tumor by T cells is mediated by interaction between peptide–major histocompatibility complexes (pMHCs) and T cell receptors (TCRs). Revealing the identity of peptides bound to MHC is critical in discovering cognate TCRs and predicting potential toxicity. We performed multimodal immunopeptidomic analyses for human prostatic acid phosphatase (PAP), a well-recognized tissue antigen. Three physical methods, including mild acid elution, coimmunoprecipitation, and secreted MHC precipitation, were used to capture a thorough signature of PAP on HLA-A*02:01. Eleven PAP peptides that are potentially A*02:01-restricted were identified, including five predicted strong binders by NetMHCpan 4.0. Peripheral blood mononuclear cells (PBMCs) from more than 20 healthy donors were screened with the PAP peptides. Seven cognate TCRs were isolated which can recognize three distinct epitopes when expressed in PBMCs. One TCR shows reactivity toward cell lines expressing both full-length PAP and HLA-A*02:01. Our results show that a combined multimodal immunopeptidomic approach is productive in revealing target peptides and defining the cloned TCR sequences reactive with prostatic acid phosphatase epitopes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.