Summary Interferon‐inducible transmembrane (IFITM) proteins are a family of small homologous proteins, localized in the plasma and endolysosomal membranes, which confer cellular resistance to many viruses. In addition, several distinct functions have been associated with different IFITM family members, including germ cell specification (IFITM1–IFITM3), osteoblast function and bone mineralization (IFITM5) and immune functions (IFITM1–3, IFITM6). IFITM1–3 are expressed by T cells and recent experiments have shown that the IFITM proteins are directly involved in adaptive immunity and that they regulate CD4+ T helper cell differentiation in a T‐cell‐intrinsic manner. Here we review the role of the IFITM proteins in T‐cell differentiation and function.
The interferon‐inducible transmembrane (Ifitm/Fragilis) genes encode homologous proteins that are induced by IFNs. Here, we show that IFITM proteins regulate murine CD4+ Th cell differentiation. Ifitm2 and Ifitm3 are expressed in wild‐type (WT) CD4+ T cells. On activation, Ifitm3 was downregulated and Ifitm2 was upregulated. Resting Ifitm‐family‐deficient CD4+ T cells had higher expression of Th1‐associated genes than WT and purified naive Ifitm‐family‐deficient CD4+ T cells differentiated more efficiently to Th1, whereas Th2 differentiation was inhibited. Ifitm‐family‐deficient mice, but not Ifitm3‐deficient mice, were less susceptible than WT to induction of allergic airways disease, with a weaker Th2 response and less severe disease and lower Il4 but higher Ifng expression and IL‐27 secretion. Thus, the Ifitm family is important in adaptive immunity, influencing Th1/Th2 polarization, and Th2 immunopathology.
Hedgehog (Hh) proteins regulate development and tissue homeostasis, but their role in atopic dermatitis (AD) remains unknown. We found that on induction of mouse AD, Sonic Hedgehog (Shh) expression in skin and Hh pathway action in skin T cells were increased. Shh signaling reduced AD pathology and the levels of Shh expression determined disease severity. Hh-mediated transcription in skin T cells in AD-induced mice increased Treg populations and their suppressive function through increased active transforming growth factor–β (TGF-β) in Treg signaling to skin T effector populations to reduce disease progression and pathology. RNA sequencing of skin CD4 + T cells from AD-induced mice demonstrated that Hh signaling increased expression of immunoregulatory genes and reduced expression of inflammatory and chemokine genes. Addition of recombinant Shh to cultures of naive human CD4 + T cells in iTreg culture conditions increased FOXP3 expression. Our findings establish an important role for Shh upregulation in preventing AD, by increased Gli-driven, Treg cell–mediated immune suppression, paving the way for a potential new therapeutic strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.