We study higher analogues of the classical independence number on $\omega $ . For $\kappa $ regular uncountable, we denote by $i(\kappa )$ the minimal size of a maximal $\kappa $ -independent family. We establish ZFC relations between $i(\kappa )$ and the standard higher analogues of some of the classical cardinal characteristics, e.g., $\mathfrak {r}(\kappa )\leq \mathfrak {i}(\kappa )$ and $\mathfrak {d}(\kappa )\leq \mathfrak {i}(\kappa )$ . For $\kappa $ measurable, assuming that $2^{\kappa }=\kappa ^{+}$ we construct a maximal $\kappa $ -independent family which remains maximal after the $\kappa $ -support product of $\lambda $ many copies of $\kappa $ -Sacks forcing. Thus, we show the consistency of $\kappa ^{+}=\mathfrak {d}(\kappa )=\mathfrak {i}(\kappa )<2^{\kappa }$ . We conclude the paper with interesting open questions and discuss difficulties regarding other natural approaches to higher independence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.