Hepatitis C virus (HCV) infection develops into chronicity in 80% of all patients, characterized by persistent low-level replication. To understand how the virus establishes its tightly controlled intracellular RNA replication cycle, we developed the first detailed mathematical model of the initial dynamic phase of the intracellular HCV RNA replication. We therefore quantitatively measured viral RNA and protein translation upon synchronous delivery of viral genomes to host cells, and thoroughly validated the model using additional, independent experiments. Model analysis was used to predict the efficacy of different classes of inhibitors and identified sensitive substeps of replication that could be targeted by current and future therapeutics. A protective replication compartment proved to be essential for sustained RNA replication, balancing translation versus replication and thus effectively limiting RNA amplification. The model predicts that host factors involved in the formation of this compartment determine cellular permissiveness to HCV replication. In gene expression profiling, we identified several key processes potentially determining cellular HCV replication efficiency.
Changes in the airway microbiome may be important in the pathophysiology of chronic lung disease in patients with cystic fibrosis. However, little is known about the microbiome in early cystic fibrosis lung disease and the relationship between the microbiomes from different niches in the upper and lower airways. Therefore, in this cross-sectional study, we examined the relationship between the microbiome in the upper (nose and throat) and lower (sputum) airways from children with cystic fibrosis using next generation sequencing. Our results demonstrate a significant difference in both α and β-diversity between the nose and the two other sampling sites. The nasal microbiome was characterized by a polymicrobial community while the throat and sputum communities were less diverse and dominated by a few operational taxonomic units. Moreover, sputum and throat microbiomes were closely related especially in patients with clinically stable lung disease. There was a high inter-individual variability in sputum samples primarily due to a decrease in evenness linked to increased abundance of potential respiratory pathogens such as Pseudomonas aeruginosa. Patients with chronic Pseudomonas aeruginosa infection exhibited a less diverse sputum microbiome. A high concordance was found between pediatric and adult sputum microbiomes except that Burkholderia was only observed in the adult cohort. These results indicate that an adult-like lower airways microbiome is established early in life and that throat swabs may be a good surrogate in clinically stable children with cystic fibrosis without chronic Pseudomonas aeruginosa infection in whom sputum sampling is often not feasible.
Adaptation of the chemotaxis sensory pathway of the bacterium Escherichia coli is integral for detecting chemicals over a wide range of background concentrations, ultimately allowing cells to swim towards sources of attractant and away from repellents. Its biochemical mechanism based on methylation and demethylation of chemoreceptors has long been known. Despite the importance of adaptation for cell memory and behavior, the dynamics of adaptation are difficult to reconcile with current models of precise adaptation. Here, we follow time courses of signaling in response to concentration step changes of attractant using in vivo fluorescence resonance energy transfer measurements. Specifically, we use a condensed representation of adaptation time courses for efficient evaluation of different adaptation models. To quantitatively explain the data, we finally develop a dynamic model for signaling and adaptation based on the attractant flow in the experiment, signaling by cooperative receptor complexes, and multiple layers of feedback regulation for adaptation. We experimentally confirm the predicted effects of changing the enzyme-expression level and bypassing the negative feedback for demethylation. Our data analysis suggests significant imprecision in adaptation for large additions. Furthermore, our model predicts highly regulated, ultrafast adaptation in response to removal of attractant, which may be useful for fast reorientation of the cell and noise reduction in adaptation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.