Cells of the monocyte-macrophage lineage play a central role in the orchestration and resolution of inflammation. Plasticity is a hallmark of mononuclear phagocytes, and in response to environmental signals these cells undergo different forms of polarized activation, the extremes of which are called classic or M1 and alternative or M2. NF-B is a key regulator of inflammation and resolution, and its activation is subject to multiple levels of regulation, including inhibitory, which finely tune macrophage functions. Here we identify the p50 subunit of NF-B as a key regulator of M2-driven inflammatory reactions in vitro and in vivo. p50 NF-B inhibits NF-B-driven, M1-polarizing, IFN- production. Accordingly, p50-deficient mice show exacerbated M1-driven inflammation and defective capacity to mount allergy and helminth-driven M2-polarized inflammatory reactions. Thus, NF-B p50 is a key component in the orchestration of M2-driven inflammatory reactions.
Gluten-related disorders have recently been reclassified with an emerging scientific literature supporting the concept of non-celiac gluten sensitivity (NCGS). New research has specifically addressed prevalence, immune mechanisms, the recognition of non-immunoglobulin E (non-IgE) wheat allergy and overlap of NCGS with irritable bowel syndrome (IBS)-type symptoms. This review article will provide clinicians with an update that directly impacts on the management of a subgroup of their IBS patients whose symptoms are triggered by wheat ingestion.
With 1.4 million deaths and 8.7 million new cases in 2011, tuberculosis (TB) remains a global health care problem and together with HIV and Malaria represents one of the three infectious diseases world-wide. Control of the global TB epidemic has been impaired by the lack of an effective vaccine, by the emergence of drug-resistant forms of Mycobacterium tuberculosis (Mtb) and by the lack of sensitive and rapid diagnostics. It is estimated, by epidemiological reports, that one third of the world’s population is latently infected with Mtb, but the majority of infected individuals develop long-lived protective immunity, which controls and contains Mtb in a T cell-dependent manner. Development of TB disease results from interactions among the environment, the host, and the pathogen, and known risk factors include HIV co-infection, immunodeficiency, diabetes mellitus, overcrowding, malnutrition, and general poverty; therefore, an effective T cell response determines whether the infection resolves or develops into clinically evident disease. Consequently, there is great interest in determining which T cells subsets mediate anti-mycobacterial immunity, delineating their effector functions. On the other hand, many aspects remain unsolved in understanding why some individuals are protected from Mtb infection while others go on to develop disease. Several studies have demonstrated that CD4+ T cells are involved in protection against Mtb, as supported by the evidence that CD4+ T cell depletion is responsible for Mtb reactivation in HIV-infected individuals. There are many subsets of CD4+ T cells, such as T-helper 1 (Th1), Th2, Th17, and regulatory T cells (Tregs), and all these subsets co-operate or interfere with each other to control infection; the dominant subset may differ between active and latent Mtb infection cases. Mtb-specific-CD4+ Th1 cell response is considered to have a protective role for the ability to produce cytokines such as IFN-γ or TNF-α that contribute to the recruitment and activation of innate immune cells, like monocytes and granulocytes. Thus, while other antigen (Ag)-specific T cells such as CD8+ T cells, natural killer (NK) cells, γδ T cells, and CD1-restricted T cells can also produce IFN-γ during Mtb infection, they cannot compensate for the lack of CD4+ T cells. The detection of Ag-specific cytokine production by intracellular cytokine staining (ICS) and the use of flow cytometry techniques are a common routine that supports the studies aimed at focusing the role of the immune system in infectious diseases. Flow cytometry permits to evaluate simultaneously the presence of different cytokines that can delineate different subsets of cells as having “multifunctional/polyfunctional” profile. It has been proposed that polyfunctional T cells, are associated with protective immunity toward Mtb, in particular it has been highlighted that the number of Mtb-specific T cells producing a combination of IFN-γ, IL-2, and/or TNF-α may be correlated with the mycobacterial load, while other studies have associate...
Imatinib mesylate (imatinib), a competitive inhibitor of the BCR-ABL tyrosine kinase, is highly effective against chronic myelogenous leukemia (CML) cells. However, because 20–30% of patients affected by CML display either primary or secondary resistance to imatinib, intentional activation of Vγ9Vδ2 T cells by phosphoantigens or by agents that cause their accumulation within cells, such as zoledronate, may represent a promising strategy for the design of a novel and highly innovative immunotherapy capable to overcome imatinib resistance. In this study, we show that Vγ9Vδ2 T lymphocytes recognize, trogocytose, and efficiently kill imatinib-sensitive and -resistant CML cell lines pretreated with zoledronate. Vγ9Vδ2 T cell cytotoxicity was largely dependent on the granule exocytosis- and partly on TRAIL-mediated pathways, was TCR-mediated, and required isoprenoid biosynthesis by zoledronate-treated CML cells. Importantly, Vγ9Vδ2 T cells from patients with CML can be induced by zoledronate to develop antitumor activity against autologous and allogeneic zoledronate-treated leukemia cells, both in vitro and when transferred into immunodeficient mice in vivo. We conclude that intentional activation of Vγ9Vδ2 T cells by zoledronate may substantially increase their antileukemia activities and represent a novel strategy for CML immunotherapy.
After autoimmune inflammation, interactions between CD95 and its ligand (CD95L) mediate thyrocyte destruction in Hashimoto's thyroiditis (HT). Conversely, thyroid autoimmune processes that lead to Graves' disease (GD) result in autoantibody-mediated thyrotropin receptor stimulation without thyrocyte depletion. We found that GD thyrocytes expressed CD95 and CD95L in a similar manner to HT thyrocytes, but did not undergo CD95-induced apoptosis either in vivo or in vitro. This pattern was due to the differential production of TH1 and TH2 cytokines. Interferon gamma promoted caspase up-regulation and CD95-induced apoptosis in HT thyrocytes, whereas interleukin 4 and interleukin 10 protected GD thyrocytes by potent up-regulation of cFLIP and Bcl-xL, which prevented CD95-induced apoptosis in sensitized thyrocytes. Thus, modulation of apoptosis-related proteins by TH1 and TH2 cytokines controls thyrocyte survival in thyroid autoimmunity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.