Secure authentication is an essential mechanism required by the vast majority of computer systems and various applications in order to establish user identity. Credentials such as passwords and biometric data should be protected against theft, as user impersonation can have serious consequences. Some practices widely used in order to make authentication more secure include storing password hashes in databases and processing biometric data under encryption. In this paper, we propose a system for both password-based and iris-based authentication that uses secure multiparty computation (SMPC) protocols and Shamir secret sharing. The system allows secure information storage in distributed databases and sensitive data is never revealed in plaintext during the authentication process. The communication between different components of the system is secured using both symmetric and asymmetric cryptographic primitives. The efficiency of the used protocols is evaluated along with two SMPC specific metrics: The number of communication rounds and the communication cost. According to our results, SMPC based on secret sharing can be successfully integrated in real-word authentication systems and the communication cost has an important impact on the performance of the SMPC protocols.
Given a hypergraph H, the Minimum Connectivity Inference problem asks for a graph on the same vertex set as H with the minimum number of edges such that the subgraph induced by every hyperedge of H is connected. This problem has received a lot of attention these recent years, both from a theoretical and practical perspective, leading to several implemented approximation, greedy and heuristic algorithms. Concerning exact algorithms, only Mixed Integer Linear Programming (MILP) formulations have been experimented, all representing connectivity constraints by the means of graph flows. In this work, we investigate the efficiency of a constraint generation algorithm, where we iteratively add cut constraints to a simple ILP until a feasible (and optimal) solution is found. It turns out that our method is faster than the previous best flow-based MILP algorithm on random generated instances, which suggests that a constraint generation approach might be also useful for other optimization problems dealing with connectivity constraints. At last, we present the results of an enumeration algorithm for the problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.