A sulfated polysaccharide extracted from Navicula sp. presented a yield of 4.4 (% w/w dry biomass basis). Analysis of the polysaccharide using gas chromatography showed that this polysaccharide contained glucose (29%), galactose (21%), rhamnose (10%), xylose (5%) and mannose (4%). This polysaccharide presented an average molecular weight of 107 kDa. Scanning electron microscopy (SEM) micrographs showed that the lyophilized Navicula sp. polysaccharide is an amorphous solid with particles of irregular shapes and sharp angles. The polysaccharide at 1% (w/v) solution in water formed gels in the presence of 0.4% (w/v) FeCl3, showing elastic and viscous moduli of 1 and 0.7 Pa, respectively. SEM analysis performed on the lyophilized gel showed a compact pore structure, with a pore size of approximately 150 nm. Very few studies on the gelation of sulfated polysaccharides using trivalent ions exist in the literature, and, to the best of our knowledge, this study is the first to describe the gelation of sulfated polysaccharides extracted from Navicula sp.
Diatoms are the most abundant group of phytoplankton, and their success lies in their significant adaptation ability to stress conditions, such as nutrient limitation. Phosphorus (P) is a key nutrient involved in the transfer of energy and the synthesis of several cellular components. Molecular and biochemical mechanisms related to how diatoms cope with P deficiency are not clear, and research into this has been limited to a few species. Among the molecular responses that have been reported in diatoms cultured under P deficient conditions is the upregulation of genes encoding enzymes related to the transport, assimilation, remobilization and recycling of this nutrient. Regarding biochemical responses, due to the reduction of the requirements for carbon structures for the synthesis of proteins and phospholipids, more CO2 is fixed than is consumed by the Calvin cycle. To deal with this excess, diatoms redirect the carbon flow toward the synthesis of storage compounds such as triacylglycerides and carbohydrates, which are excreted as extracellular polymeric substances. This review aimed to gather all current knowledge regarding the biochemical and molecular mechanisms of diatoms related to managing P deficiency in order to provide a wider insight into and understanding of their responses, as well as the metabolic pathways affected by the limitation of this nutrient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.