The electronic characteristics of the dative N−B bond in three Lewis acid−base adducts, hydrazine borane, hydrazine bisborane, and ammonia trifluoroborane, are analyzed by an approach combining experimental electron density determination with a broad variety of theoretical calculations. Special focus is directed to the weak dihydrogen contacts in hydrazine borane. The Atoms In Molecules partitioning scheme is complemented by additional methods like the Source Function, and the Electron Localizability Indicator. For the multipole-free theoretical models of hydrazine borane and hydrazine bisborane, a weak charge donation from Lewis base to acid of about 0.05 e is found, whereas multipole refinement of theoretical and experimental structure factors resulted in opposite signs for the Lewis acid and base fragments. For ammonia trifluoroborane, the donation from Lewis base to acid is slightly larger (about 0.13 e) in the multipole-free models, and the charges obtained by multipole refinement retain the direction of the charge donation but show quite large variations. The natural population analysis charges predict larger charge donations (0.35 e) from the Lewis bases to the acids for the three title complexes. Although the three compounds exhibit intermolecular interactions of different types and strengths, including classical hydrogen bonds, F···H contacts and the already mentioned dihydrogen bonds, almost no charge transfer is detected between different molecules within the crystal environment. The main electronic effect of the formation of the Lewis acid-base adducts and of the crystallization is an increase in the charge separation within the ammonia/hydrazine fragments, which is supported by all investigated bond and atomic properties. The nature of the dative N-B bond is found to be mainly electrostatic, but with a substantial contribution of covalency. The F-B bonds show similarities and differences from the N-B bonds, which makes a distinction of coordinative (or dative) bonds from polar covalent interactions possible.
Two crystalline modifications of the tripeptide L-Ala-L-Tyr-L-Ala, which have different solvent molecules in the crystal structure (water and ethanol for modifications 1 and 2), were the subject of experimental charge density studies based on high resolution X-ray data collected at ultra-low temperatures of 9 K (1) and 20 K (2), respectively. The molecular structures and the intermolecular interactions were found to be rather similar in the two crystal lattices, so that this study allowed the reproducibility of the charge density of a given molecule in different (but widely comparable) crystalline environments to be examined. With respect to bond topological and atomic properties, the agreement between the two modifications of the title tripeptide was in the same range as found from the comparison with the previously reported results of tri-L-alanine. It follows that the reproducibility and transferability of quantitative topological data are comparable and that within the accuracy of experimental charge density work the replacement of the central amino acid residue L-Ala by L-Tyr has no significant influence, neither on bond nor on the atomic properties of the oligopeptide main chain. Intermolecular interactions in the form of hydrogen bonds were characterized quantitatively and qualitatively by topological criteria and by mapping the charge density distribution on the Hirshfeld surface.
In an approach combining high-resolution X-ray diffraction at low temperatures with density functional theory calculations, two closo-borates, B(12)H(12)(2-) (1) and B(10)H(10)(2-) (2), and two arachno-boranes, B(10)H(12)L(2) [L = amine (3) or acetonitrile (4)], were analyzed by means of the atoms-in-molecules (AIM) theory and electron localizability indicator (ELI-D). The two-electron three-center (2e3c) bonds of the borane cages are investigated with the focus on real-space indicators for chemical bonding and electron delocalization. In compound 2, only two of the three expected bond critical points (bcp's) are found. However, a weakly populated ELI-D basin is found for this pair of adjacent B atoms and the delocalization index and the Source contributions are on the same order of magnitude as those for the other pairs. The opposite situation is found in the arachno-boranes, where no ELI-D basins are found for two types of B-B pairs, which, in turn, exhibit a bcp. However, again the delocalization index is on the same order of magnitude for this bonding interaction. The results show that an unambiguous real-space criterion for chemical bonding is not given yet for this class of compounds. The arachno-boranes carry a special B-B bond, which is the edge of the crown-shaped molecule. This bond is very long and extremely curved inward the B-B-B ring. Nevertheless, the corresponding bond ellipticity is quite small and the ELI-D value at the attractor position of the disynaptic valence basin is remarkably larger than those for all other B-B valence basins. Furthermore, the value of the ED is large in relation to the B-B bond length, so that only this bond type does not follow a linear relationship of the ED value at the bcp versus B-B bond distances, which is found for all other B-B bcp's. The results indicate that both 2e2c and 2e3c bonding play a distinct role in borane chemistry.
In an approach combining high resolution X-ray diffraction at low temperatures with density functional calculations, two closo-borates, B12H12(2-) (1) and B10H10(2-) (2), and two arachno-boranes, B10H12L2 (L = amine (3) or acetonitrile (4)), are studied by means of Atoms In Molecules (AIM) theory and Electron Localizability Indicator (ELI-D). The charge transfer via the dative N-B bonds in the arachno-boranes and via dihydrogen contacts in the closo-borates is quantified. The dative N-B bond in 4 is significantly shorter and stronger than that in 3 and in small N-B Lewis acid base adducts from the literature. It is even shorter in the gas phase than in the crystal environment in contrast to the bond shortening in the crystal generally found for N-B Lewis acid-base adducts. Furthermore, the calculated charge transfer in terms of AIM charges is opposite to the expected N → B direction but still weak as found for all other N-B bonds. The intramolecular charge redistributions due to intermolecular interactions are quantified by the AIM and ELI-D analysis of contact ion pairs. The latter method gives a deeper understanding of delocalization effects in the borane cages as well as in the counterions. Since dihydrogen bonds are rarely found in crystal structures, one focus was directed to the topologies of the large number of 58 experimentally found contacts of this type. The analysis reveals that the electron density at the bond critical point, the corresponding Laplace function, and the curvature along the bond path (λ3) show a behavior that clearly discriminates these interactions from classical hydrogen bonds, confirming earlier theoretical findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.