Platelets of both healthy and hypertensive subjects were analyzed by Raman and Fourier transform infrared by attenuated total reflectance (FTIR‐ATR) spectroscopies. We compared the average relative intensities of the main Raman peaks, the areas of convoluted bands in the amide I region, and the second derivative of the FTIR‐ATR spectra. Key differences were found in the bands reflecting lipid content and protein structure. The Raman spectra exhibited statistically significant changes in the intensity of bands associated with CC stretching vibrations in the carbon chains of lipids (960 cm−1) and the amide I band (centered at 1,658 cm−1). The amide I deconvolution showed changes in the area percentages of the bands corresponding to different protein secondary structures, suggesting biochemical and protein conformational differences between healthy versus arterial hypertension platelets, which might be related to the platelet activation stage. An analysis by using the second derivative of the FTIR‐ATR spectra, followed by deconvolution of amide regions support this observation, revealing differences in the amide II and amide I bands. Moreover, modifications observed in the phosphate‐associated bands are possibly related to the phospholipids' behavior and the phosphorylation of proteins. Our results suggest interesting differences between the spectra of healthy versus hypertensive platelets, which may be mainly associated with biochemical changes at the cellular membrane level.
Arterial hypertension (HTN) is a global public health concern and an important risk factor for cardiovascular diseases and renal failure. We previously reported overexpression of ENaC on the plasma membrane of human platelets is a hallmark of HTN. In this double-blinded study of an open population (n = 167), we evaluated the sensitivity and specificity of a diagnostic assay based on gold nanoparticles (AuNPs) conjugated to an antibody against epithelial sodium channel (ENaC) expressed on platelets, which is detected using a fluorescent anti-ENaC secondary antibody and spectrofluorometry. Using the cutoff value for the AuNP-anti-ENaC assay, we confirmed the diagnosis for 62.1% of patients with clinical HTN and detected 59.7% of patients had previously undiagnosed HTN. Although some shortcomings in terms of accurately discriminating healthy individuals and patients with HTN still need to be resolved, we propose this AuNP-anti-ENaC assay could be used for initial screening and early diagnosis to critically improve opportune clinical management of HTN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.