Spain declared the elimination of malaria in 1964. In non-endemic areas, the overwhelming majority of malaria cases are acquired abroad, and locally acquired infections are rare events. In Spain, malaria is a statutorily notifiable disease. During these fifty years more than ten thousand malaria cases have been reported, and about 0.8% of them did not have a history of recent travel. In this report, it was carried out a review of the ways in which malaria can be transmitted in non-endemic areas and a short description of the Spanish cases, aggregated by their transmission mechanisms. Four cases contracted malaria by mosquito bites; there were two autochthonous cases and two of “airport malaria”. The other 28 cases were: congenital malaria cases, transfusion-transmitted malaria, post-transplant cases, nosocomial transmission and cases in intravenous drug users. In addition, in 1971 there was an outbreak of 54 cases due to exposure to blood or blood products. So, while malaria usually is an imported disease in non-endemic areas, it should not be excluded in the differential diagnosis of persons who have fever of unknown origin, regardless of their travel history.
The spatio-temporal distribution of influenza is linked to variations in meteorological factors, like temperature, absolute humidity, or the amount of rainfall. The aim of this study was to analyse the association between influenza activity, and meteorological variables in Spain, across five influenza seasons: 2010–2011 through to 2014–2015 using generalized linear negative binomial mixed models that we calculated the weekly influenza proxies, defined as the weekly influenza-like illness rates, multiplied by the weekly proportion of respiratory specimens that tested positive for influenza. The results showed an association between influenza transmission and dew point and cumulative precipitation. In increase in the dew point temperature of 5 degrees produces a 7% decrease in the Weekly Influenza Proxy (RR 0.928, IC: 0.891–0.966), and while an increase of 10 mm in weekly rainfall equates to a 17% increase in the Weekly Influenza Proxy (RR 1.172, IC: 1.097–1.251). Influenza transmission in Spain is influenced by variations in meteorological variables as temperature, absolute humidity, or the amount of rainfall.
Background Of febrile illnesses in Europe, dengue is second only to malaria as a cause of travellers being hospitalized. Local transmission has been reported in several European countries, including Spain. This study assesses the evolution of dengue-related admissions in Spain in terms of time, geographical distribution and individuals’ common characteristics; it also creates a predictive model to evaluate the risk of local transmission. Methods This is a retrospective study using the Hospital Discharge Records Database from 1997 to 2016. We calculated hospitalization rates and described clinical characteristics. Spatial distribution and temporal behaviour were also assessed, and a predictive time series model was created to estimate expected cases in the near future. Figures for resident foreign population, Spanish residents’ trips to endemic regions and the expansion of Aedes albopictus were also evaluated. Results A total of 588 dengue-related admissions were recorded: 49.6% were women, and the mean age was 34.3 years. One person died (0.2%), 82% presented with mild-to-moderate dengue and 7–8% with severe dengue. We observed a trend of steady and consistent increase in incidence (P < 0.05), in parallel with the increase in trips to dengue-endemic regions. Most admissions occurred during the summer, showing significant seasonality with 3-year peaks. We also found important regional differences. According to the predictive time series analysis, a continuing increase in imported dengue incidence can be expected in the near future, which, in the worst case scenario (upper 95% confidence interval), would mean an increase of 65% by 2025. Conclusion We present a nationwide study based on hospital, immigration, travel and entomological data. The constant increase in dengue-related hospitalizations, in combination with wider vector distribution, could imply a higher risk of autochthonous dengue transmission in the years to come. Strengthening the human and vector surveillance systems is a necessity, as are improvements in control measures, in the education of the general public and in fostering their collaboration in order to reduce the impact of imported dengue and to prevent the occurrence of autochthonous cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.