Abstract:In this study, our proposed ultraviolet light-emitting diode (UV LED) mosquito-trapping lamp is designed to control diseases brought by insects such as mosquitoes. In order to enable the device to efficiently catch mosquitoes in a wider area, a secondary freeform lens (SFL) is designed for UV LED. The lens is mounted on a 3 W UV LED light bar as a mosquito-trapping lamp of the new UV LED light bar module to achieve axially symmetric light intensity distribution. The special SFL is used to enhance the trapping capabilities of the mosquito-trapping lamp. The results show that when the secondary freeform surface lens is applied to the experimental outdoor UV LED mosquito-trapping lamp, the trapping range can be expanded to 100π·m 2 and the captured mosquitoes increased by about 300%.
Dengue fever is the most serious vector-borne disease in Asia. There are still no dengue vaccines or therapeutic drugs, and vector-mosquito control is the main prevention and treatment method. The prevention and control of dengue-fever vector mosquitoes in Taiwan is still dominated by larval control. However, the removal of the source of mosquito-borne diseases has not been fully implemented, and the removal process of vector-borne mosquitoes cannot keep up with their breeding rate. In addition, chemical agents used in the elimination of pathogenic mosquitoes may cause mosquito resistance and environmental pollution. Therefore, it is important to develop new prevention and control technologies. This study is dedicated to the development of a mosquito trapping optical system with high efficiency and low glare that is safe for humans. The system is mainly equipped with ultraviolet light-emitting diodes (UV-LED), a freeform-surfaced optical reflector, and a photocatalyst. The reflector can lead light downward for the protection of user eyes, and expand the range of trapping mosquitoes to 225 π m2. Based on practical experiments, captured mosquitoes increased by about 450% through the proposed system compared to conventional traps using UV LED. In addition, the proposed system is shown to be 45% more enhanced in trapping capability after a photocatalyst (titanium dioxide) coating is applied to its reflector.
Dengue fever is a public health issue of global concern. Taiwan is located in the subtropical region featuring humid and warm weather, which is conducive to the breeding of mosquitoes and flies. Together with global warming and the increasing frequency of international exchanges, in addition to the outbreak of pandemics and dengue fever, the number of people infected has increased rapidly. This study is dedicated to the development of a new mosquito-trapping system. Research has shown that specific wavelengths, colors, and temperatures are highly attractive to both Aedes aegypti and Aedes albopictus. In this study, we create equipment which effectively improves the trapping capabilities of mosquitoes in a wider field. The design of the special Secondary Freeform Lens Device (SFLD) is used to expand the range for trapping mosquitoes and create illumination uniformity; it also directs light downward for the protection of users’ eyes. In addition, we use the correct amount of stearic acid as a mosquito attractant to allow a better control effect against mosquitoes during the day. In summary, when the UV LED mosquito trapping system is combined with a quadratic free-form lens, the experimental results show that the system can extend the capture range to 100 π m2 in which the number of captured mosquitoes is increased by about 350%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.