The receptor specificity and signal transduction pathway has been identified and characterized for a truncated form of myeloid progenitor inhibitory factor-1 (MPIF-124–99). MPIF-1 binds specifically to sites, in particular CCR1, shared with macrophage inflammatory protein-1α (MIP-1α) on the surface of human monocytes and dendritic cells, as inferred by its ability to compete for [125I]MIP-1α, but not for [125I]MIP-1β or [125I]monocyte chemotactic protein-1(MCP-1) binding to intact cells. Based on calcium flux, MPIF-1 is an agonist on CCR1-transfected HEK-293 cells, monocytes, and dendritic cells, but not on CCR5-, CCR8-, or CX3CR1-transfected cells. The inhibitory effect of guanosine 5′-O-(3-thio-triphosphate) (GTP-γS) or pertussis toxin pretreatment on MPIF-1 binding and calcium mobilization, respectively, indicates the involvement of G proteins in the interaction of MPIF-1 and its receptor(s). The increase in intracellular free calcium concentration following MPIF-1 treatment is mainly due to the influx of calcium from an extracellular pool. However, a portion of the intracellular free calcium concentration is derived from a phospholipase C inhibitor-sensitive intracellular pool. MPIF-1 induces a rapid dose-dependent release of [3H]arachidonic acid from monocytes that is dependent on extracellular calcium and is blocked by phospholipase A2 (PLA2) inhibitors. Furthermore, PLA2 activation is shown to be necessary for filamentous actin formation in monocytes. Thus, the MPIF-1 signal transduction pathway appears to include binding to CCR1; transduction by G proteins; effector function by phospholipase C, protein kinase C, calcium flux, and PLA2; and cytoskeletal remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.