This research shows the analysis of three case studies using perforated plates with a central orifice to generate hydrodynamic cavitation with diameters of 2 mm, 3 mm, and 4 mm. Experimental model was fabricated and instrumented to validate numerical models of the perforated plates and their corresponding pressure drop. Test points were established in the experimental setup to measure variables such as pressure drop compared between upstream pressured (distance of one diameter before plate), and downstream pressure (distance of ½ diameter after the plate), according to the ISO 5167 standard. The numerical model was developed using commercial computational fluid dynamics (CFD) software applying the standard k-epsilon turbulence model, the mixture model, and the Rayleigh-Plesset equation. Results demonstrated that numerical model of the pressure drop produced hydrodynamic cavitation downstream the perforated plates; such phenomenon was validated with experimental data by less than 5% error values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.