Self-assembled monolayer (SAMS) are commonly produced by immersing substrates in organic solutions containing trichlorosikme coupling agents. Unfortunately, such deposition solutions can also form alternate structures including inverse micelles and lamellar phases. The formation of alternate phases is one reason for the sensitivity of SAM depositions to factors such as the water content of the deposition solvent. If such phases are present, the performance of thin films used for applications such as minimization of friction and stiction in rnicromachines can be seriously compromised.Jnverse micelle formation has been studied in detail for depositions involving lH-, lH-,
Palmierite (K2Pb(SO4)2) has been prepared via a chemical synthesis method. Intensity differences were observed when X-ray powder data from the newly synthesized compound were compared to the published powder diffraction card (PDF) 29-1015 for Palmierite. Investigation of these differences indicated the possibility of preferred orientation and/or chemical inhomogeneity affecting intensities, particularly those of the basal (00l) reflections. Annealing of the Palmierite was found to reduce the effects of preferred orientation. Electron microprobe analysis confirmed K:Pb:S as 2:1:2 for the for the annealed Palmierite powder. Subsequent least-squares refinement and Rietveld analysis of the annealed powder showed peak intensities very close to that of a calculated Palmierite pattern (based on single crystal data), yet substantially higher than many of the PDF 29-1015 published intensities. Further investigation of peak intensity variation via calculated patterns suggested that the intensity discrepancies between the annealed sample and those found in PDF 29-1015 were potentially due to chemical variation in the K2Pb(SO4)2 composition. X-ray powder diffraction and crystal data for Palmierite are reported for the annealed sample. Palmierite is trigonal/hexagonal with unit cell parameters a=5.497(1) Å, c=20.864(2) Å, space group R-3m(166), and Z=3.
The Materials Chemistry Department 1846 has developed a lab-scale chem-prep process for the synthesis of PNZT 95/5, a ferroelectric material that is used in neutron generator power supplies. This process (Sandia Process, or SP) has been successfully transferred to and scaled by Department 14192 (Ceramics and Glass Department), (Transferred Sandia Process, or TSP), to meet the future supply needs of Sandia for its neutron generator production responsibilities. In going from the development-size SP batch (1.6 kg/batch) to the production-scale TSP powder batch size (10 kg/batch), it was important that it be determined if the scaling process caused any "performance-critical" changes in the PNZT 95/5 being produced. One area where a difference was found was in the particle size distributions of the calcined PNZT powders. Documented in this SAND report are the results of an experimental study to determine the origin of the differences in the particle size distribution of the SP and TSP powders.4
Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. n SAND98-2750 Unlimited Release
ReCElVEO JAM 3 0 B 8A chemical solution powder synthesis technique has been developed that produc Q i @ T I uniform powders of lead magnesium niobate (PMN) with 60 to 80 nm crystallite size. The synthesis technique was based on the dissolution of lead acetate and alkoxide precursors in acetic acid followed by precipitation with oxalic acidpropanol solutions. Lead magnesium niobate ceramics fabricated from these chemically derived powders had smaller, more uniform grain size and higher dielectric constants than ceramics fabricated from mixed oxide powders that were processed under similar thermal conditions. Chem-prep PMN dielectrics with peak dielectric constants greater than 22,000 and polarizations in excess of 29 pC/cm2 were obtained for 1100°C firing treatments. Substantial decreases in dielectric constant and polarization were measured for chemically prepared PMN ceramics fired at lower temperatures, consistent with previous work on mixed oxide materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.