SUMMARY
Neutrophils hinder bacterial growth by a variety of antimicrobial mechanisms, including the production of reactive oxygen species and the secretion of proteins that sequester nutrients essential to microbes. A major player in this process is calprotectin, a host protein that exerts antimicrobial activity by chelating zinc and manganese. Here we show that the intestinal pathogen Salmonella enterica serovar Typhimurium employs specialized metal transporters to evade calprotectin sequestration of manganese, allowing the bacteria to outcompete commensals and thrive in the inflamed gut. The pathogen’s ability to acquire manganese in turn promotes function of SodA and KatN, enzymes that utilize the metal as a cofactor to detoxify reactive oxygen species. This manganese-dependent SodA activity allows the bacteria to evade neutrophil killing mediated by calprotectin and reactive oxygen species. Thus, manganese acquisition enables S. Typhimurium to overcome host antimicrobial defenses and support its competitive growth in the intestine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.