High-throughput screening (HTS) methods are becoming increasingly essential in discovering chiral catalysts or auxiliaries for asymmetric transformations due to the advent of parallel synthesis and combinatorial chemistry. Both parallel synthesis and combinatorial chemistry can lead to the exploration of a range of structural candidates and reaction conditions as a means to obtain the highest enantiomeric excess (ee) of a desired transformation. One current bottleneck in these approaches to asymmetric reactions is the determination of ee, which has led researchers to explore a wide range of HTS techniques. To be truly high-throughput, it has been proposed that a technique that can analyse a thousand or more samples per day is needed. Many of the current approaches to this goal are based on optical methods because they allow for a rapid determination of ee due to quick data collection and their parallel analysis capabilities. In this critical review these techniques are reviewed with a discussion of their respective advantages and drawbacks, and with a contrast to chromatographic methods (180 references).
Enantioselective indicator displacement assays (eIDAs) were used for the determination of enantiomeric excess (ee) of alpha-amino acids as an alternative to the labor-intensive technique of chromatography. In this study, eIDAs were implemented by the use of two chiral receptors [(Cu(II)(1)](2+), [Cu(II)(2)](2+)) in conjunction with the indicator chrome azurol S. The two receptors were able to enantioselectively discriminate 13 of the 17 analyzed alpha-amino acids. Enantiomeric excess calibration curves were made using both receptors and then used to analyze true test samples to check the system's ability to determine ee accurately. The proposed method uses a conventional UV-vis spectrophotometer to monitor the colorimetric signal, which allows for a potential high-throughput screening (HTS) method for determining ee. The techniques created consistently produced results accurate enough for rapid preliminary determination of ee.
Enantioselective indicator displacement assays (eIDAs) for alpha-amino acids were conducted in a 96-well plate format to demonstrate the viability of the technique for the high-throughput screening (HTS) of enantiomeric excess (ee) values. Chiral receptors [Cu(II)(1)](2+) and [Cu(II)(2)](2+) with the indicator chrome azurol S were implemented for the eIDAs. Enantiomeric excess calibration curves were made using both receptors and then used to analyze true test samples. These results were compared to those previously obtained with a conventional UV-vis spectrophotometer, and they showed little to no loss of accuracy, while the speed of analysis was increased. A sample of valine of unknown ee was synthesized through an asymmetric reaction to produce a realistic reaction sample, which was analyzed using receptor [Cu(II)(1)](2+). The experimentally determined ee using our eIDA was compared to that obtained by chiral HPLC and (1)H NMR chiral shift reagent analysis. This gave errors of 4.7% and 12.0%, respectively. In addition to the use of ee calibration curves, an artificial neural network (ANN) was used to determine the % L-amino acid of the test samples and of the sample of valine of unknown ee from the asymmetric reaction. This method obtained errors of 5.9% and 2.2% compared to chiral HPLC and (1)H NMR chiral shift reagent analysis, respectively. The technique using calibration curves for the determination of ee on a 96-well plate allows one to determine 96 ee values in under a minute, enabling its use for HTS of asymmetric reactions with acceptable accuracy.
Ketone handedness was discriminated using circular dichroism (CD) spectroscopy by monitoring the metal-to-ligand charge transfer (MLCT) bands of complexes between [CuI((S)-1)(CH3CN)2]PF6 and derivatized α-chiral cyclohexanones (4). This method was able to quantify enantiomeric excess of unknown samples using a calibration curve, giving an absolute error of ±7%. The analysis was rapid, allowing potential application of this assay in high-throughput screening (HTS).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.