Natural-based compounds with repellent activity arise nowadays with the possibility to replace commercial synthetic repellents wholly or partially, such as N,N-Diethyl-m-toluamide (DEET). It is due to DEET's demonstrated toxicity and cutaneous irritation for human beings. Besides, research recommends avoiding using it with kids and pregnant women. The search for a repellent product implies early stages of detailed research that resolve the modes of action against the target insect. Therefore the objective of the current study was to analyze neuronal electrophysiological signals and olfactory system protein expression when the Aedes aegypti mosquito with exposition to natural-based repellents. Adult females of Ae. aegypti of Rockefeller strain were exposed to specific concentrations of repellent compounds like geranyl acetate, α-bisabolol, nerolidol, and DEET. The neuronal effect was measured by electroantennography technique, and the effect of exposure to either DEET or a mixture of natural molecules on protein expression was determined with 2D-PAGE followed by MALDI-TOF-mass spectrometry (MS). This approach revealed that DEET affected proteins related to synapses and ATP production, whereas natural-based repellents increased transport, signaling, and detoxification proteins. The proteomic and electrophysiology experiments demonstrated that repellent exposure disrupts ionic channel activity and modifies neuronal synapse and energy production processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.