Abstract. In the present study we analyze the effect of bias adjustments in both meteorological and streamflow forecasts on the skill and statistical consistency of monthly streamflow and yearly minimum daily flow forecasts. Both raw and preprocessed meteorological seasonal forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) are used as inputs to a spatially distributed, coupled surface–subsurface hydrological model based on the MIKE SHE code. Streamflow predictions are then generated up to 7 months in advance. In addition to this, we post-process streamflow predictions using an empirical quantile mapping technique. Bias, skill and statistical consistency are the qualities evaluated throughout the forecast-generating strategies and we analyze where the different strategies fall short to improve them. ECMWF System 4-based streamflow forecasts tend to show a lower accuracy level than those generated with an ensemble of historical observations, a method commonly known as ensemble streamflow prediction (ESP). This is particularly true at longer lead times, for the dry season and for streamflow stations that exhibit low hydrological model errors. Biases in the mean are better removed by post-processing that in turn is reflected in the higher level of statistical consistency. However, in general, the reduction of these biases is not sufficient to ensure a higher level of accuracy than the ESP forecasts. This is true for both monthly mean and minimum yearly streamflow forecasts. We discuss the importance of including a better estimation of the initial state of the catchment, which may increase the capability of the system to forecast streamflow at longer leads.
Abstract.In the present study we analyze the effect of bias adjustments in both meteorological and streamflow forecasts on skill and reliability of monthly average streamflow and low flow forecasts. Both raw and pre-processed meteorological 10 seasonal forecast from the European Center for Medium-Range Weather Forecasts (ECMWF) are used as inputs to a spatially distributed, coupled surface -subsurface hydrological model based on the MIKE SHE code in order to generate streamflow predictions up to seven months in advance. In addition to this, we postprocess streamflow predictions using an empirical quantile mapping that adjusts the predictive distribution in order to match the observed one. Bias, skill and statistical consistency are the qualities evaluated throughout the forecast generating strategies and we analyze where the 15 different strategies fall short to improve them. ECMWF System 4-based streamflow forecasts tend to show a lower accuracy level than those generated with an ensemble of historical observations, a method commonly known as Ensemble Streamflow Prediction (ESP). This is particularly true at longer lead times, for the dry season and for streamflow stations that exhibit low hydrological model errors. Biases in the mean are better removed by postprocessing that in turn is reflected in the higher level of statistical consistency. However, in general, the reduction of these biases is not enough to ensure a higher level of 20 accuracy than the ESP forecasts. This is true for both monthly mean and minimum yearly streamflow forecasts. We highlight the importance of including a better estimation of the initial state of the catchment, which will increase the capability of the system to forecast streamflow at longer leads.
Abstract. This study analyzes the quality of the raw and post-processed seasonal forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF) System 4. The focus is given to Denmark, located in a region where seasonal forecasting is of special difficulty. The extent to which there are improvements after post-processing is investigated. We make use of two techniques, namely linear scaling or delta change (LS) and quantile mapping (QM), to daily bias correct seasonal ensemble predictions of hydrologically relevant variables such as precipitation, temperature and reference evapotranspiration (ET0). Qualities of importance in this study are the reduction of bias and the improvement in accuracy and sharpness over ensemble climatology. Statistical consistency and its improvement is also examined. Raw forecasts exhibit biases in the mean that have a spatiotemporal variability more pronounced for precipitation and temperature. This variability is more stable for ET0 with a consistent positive bias. Accuracy is higher than ensemble climatology for some months at the first month lead time only and, in general, ECMWF System 4 forecasts tend to be sharper. ET0 also exhibits an underdispersion issue, i.e., forecasts are narrower than their true uncertainty level. After correction, reductions in the mean are seen. This, however, is not enough to ensure an overall higher level of skill in terms of accuracy, although modest improvements are seen for temperature and ET0, mainly at the first month lead time. QM is better suited to improve statistical consistency of forecasts that exhibit dispersion issues, i.e., when forecasts are consistently overconfident. Furthermore, it also enhances the accuracy of the monthly number of dry days to a higher extent than LS. Caution is advised when applying a multiplicative factor to bias correct variables such as precipitation. It may overestimate the ability that LS has in improving sharpness when a positive bias in the mean exists.
Abstract. This study analyzes the quality of the raw and postprocessed seasonal forecasts of the European Center of Medium Weather Forecasts (ECMWF) System 4. The focus is given to Denmark located in a region where seasonal forecasting is of special difficulty. The extent to which there are improvements after postprocessing is investigated. We 10 make use of two techniques, namely, linear scaling/delta change (LS) and quantile mapping (QM) to daily bias correct seasonal ensemble predictions of hydrological relevant variables such as precipitation (P), temperature (T) and reference evapotranspiration (E T0 ). Qualities of importance in this study are the reduction of bias and the improvement in accuracy and sharpness over ensemble climatology. Statistical consistency and its improvement is also examined. Raw forecasts exhibit biases in the mean that have a spatio-temporal variability more pronounced for P and T. This variability is more stable for 15 E T0 with a consistent positive bias. Accuracy is higher than ensemble climatology for some months at the first month lead time only and, in general, ECMWF System 4 forecasts tend to be sharper. E T0 also exhibits an underdispersion issue, i.e., forecasts are narrower than their true uncertainty level. After correction, reductions in the mean are seen. This however, is not enough to ensure an overall higher level of skill in terms of accuracy although modest improvements are seen for T and E T0 , mainly at the first month lead time. QM is better suited to improve statistical consistency of forecasts that exhibit 20 dispersion issues, i.e., when forecasts are consistently overconfident. Furthermore, it also enhances the accuracy of the monthly number of dry days to a higher extent than LS. Caution is advised when applying a multiplicative factor to bias correct variables such as P. It may overestimate the ability that LS has in improving sharpness when a positive bias in the mean exists.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.