Candida tropicalis has emerged as one of the most important Candida species. It has been widely considered the second most virulent Candida species, only preceded by C. albicans. Besides, this species has been recognized as a very strong biofilm producer, surpassing C. albicans in most of the studies. In addition, it produces a wide range of other virulence factors, including: adhesion to buccal epithelial and endothelial cells; the secretion of lytic enzymes, such as proteinases, phospholipases, and hemolysins, bud-to-hyphae transition (also called morphogenesis) and the phenomenon called phenotypic switching. This is a species very closely related to C. albicans and has been easily identified with both phenotypic and molecular methods. In addition, no cryptic sibling species were yet described in the literature, what is contradictory to some other medically important Candida species. C. tropicalis is a clinically relevant species and may be the second or third etiological agent of candidemia, specifically in Latin American countries and Asia. Antifungal resistance to the azoles, polyenes, and echinocandins has already been described. Apart from all these characteristics, C. tropicalis has been considered an osmotolerant microorganism and this ability to survive to high salt concentration may be important for fungal persistence in saline environments. This physiological characteristic makes this species suitable for use in biotechnology processes. Here we describe an update of C. tropicalis, focusing on all these previously mentioned subjects.
Candidemia has been considered a persistent public health problem with great impact on hospital costs and high mortality. We aimed to evaluate the epidemiology and prognostic factors of candidemia in a tertiary hospital in Northeast Brazil from January 2011 to December 2016. Demographic and clinical data of patients were retrospectively obtained from medical records and antifungal susceptibility profiling was performed using the broth microdilution method. A total of 68 episodes of candidemia were evaluated. We found an average incidence of 2.23 episodes /1000 admissions and a 30-day mortality rate of 55.9%. The most prevalent species were Candida albicans (35.3%), Candida tropicalis (27.4%), Candida parapsilosis (21.6%) and Candida glabrata (11.8%). Higher mortality rates were observed in cases of candidemia due to C . albicans (61.1%) and C . glabrata (100%), especially when compared to C . parapsilosis (27.3%). Univariate analysis revealed some variables which significantly increased the probability of death: older age ( P = 0.022; odds ratio [OR] = 1.041), severe sepsis ( P < 0.001; OR = 8.571), septic shock ( P = 0.035; OR = 3.792), hypotension ( P = 0.003; OR = 9.120), neutrophilia ( P = 0.046; OR = 3.080), thrombocytopenia ( P = 0.002; OR = 6.800), mechanical ventilation ( P = 0.009; OR = 8.167) and greater number of surgeries ( P = 0.037; OR = 1.920). Multivariate analysis showed that older age ( P = 0.040; OR = 1.055), severe sepsis ( P = 0.009; OR = 9.872) and hypotension ( P = 0.031; OR = 21.042) were independently associated with worse prognosis. There was no resistance to amphotericin B, micafungin or itraconazole and a low rate of resistance to fluconazole (5.1%). However, 20.5% of the Candida isolates were susceptible dose-dependent (SDD) to fluconazole and 7.7% to itraconazole. In conclusion, our results could assist in the adoption of strategies to stratify patients at higher risk for developing candidemia and worse prognosis, in addition to improve antifungal management.
Several studies have been developed regarding human health risks associated with the recreational use of beaches contaminated with domestic sewage. These wastes contain various micro-organisms, including Candida tropicalis. In this context, the objective of this study was to characterize C. tropicalis isolates from the sandy beach of Ponta Negra, Natal, Rio Grande do Norte, Brazil, regarding the expression of in vitro virulence factors, adaptation to osmotic stress and susceptibility to antifungal drugs. We analyzed 62 environmental isolates and observed a great variation among them for the various virulence factors evaluated. In general, environmental isolates were more adherent to human buccal epithelial cells (HBEC) than C. tropicalis ATCC13803 reference strain, and they also showed increased biofilm production. Most of the isolates presented wrinkled phenotypes on Spider medium (34 isolates, 54.8%). The majority of the isolates also showed higher proteinase production than control strains, but low phospholipase activity. In addition, 35 isolates (56.4%) had high hemolytic activity (hemolysis index > 0.55). With regard to C. tropicalis resistance to osmotic stress, 85.4% of the isolates were able to grow in a liquid medium containing 15% sodium chloride. The strains were highly resistant to the azoles tested (fluconazole, voriconazole and itraconazole). Fifteen strains were resistant to the three azoles tested (24.2%). Some strains were also resistant to amphotericin B (14 isolates; 22.6%), while all of them were susceptible for the echinocandins tested, except for a single strain of intermediate susceptibility to micafungin. Our results demonstrate that C. tropicalis isolated from the sand can fully express virulence attributes and showed a high persistence capacity on the coastal environment; in addition of showing high minimal inhibitory concentrations to several antifungal drugs used in current clinical practice, demonstrating that environmental isolates may have pathogenic potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.