Coelenterazine, a member of the imidazopyrazinone class of chemiluminescent substrates, presents significant potential as a dynamic probe of reactive oxygen species in a biological environment, such as a superoxide anion, in which these species are important in cellular biology and pathology. The objective of the current study was to understand in what way the efficiency of singlet and triplet chemiexcitation could be modulated, towards a more efficient use of imidazopyrazinone-based compounds as dynamic chemiluminescent probes. To this end the thermolysis of imidazopyrazinone dioxetanone, substituted at the C-position with electron-donating or electron-withdrawing groups, was characterized with a theoretical approach based on density functional theory. Substituents with different electron-donating/withdrawing characters have only a limited effect on the singlet chemiexcitation of anionic dioxetanone. For neutral dioxetanone, both electron-withdrawing and weak electron-donating substituents increase singlet chemiexcitation, to the contrary of strong electron-donating groups. During their thermolysis reaction, all molecules presented regions of degeneracy with triplet states, thereby indicating the possibility of triplet chemiexcitation.
Prior to further purification, carbon dots interact with the fluorescent impurities of their synthesis to produce hybrid luminescence.
Spent coffee grounds (SCGs) are known for containing many organic compounds of interest, including carbohydrates, lipids, phenolic compounds and proteins. Therefore, we investigated them as a potential source to obtain carbon dots (CDs) via a nanotechnology approach. Herein, a comparison was performed between CDs produced by SCGs and classic precursors (e.g., citric acid and urea). The SCG-based CDs were obtained via the one-pot and solvent-free carbonization of solid samples, generating nanosized particles (2.1–3.9 nm). These nanoparticles exhibited a blue fluorescence with moderate quantum yields (2.9–5.8%) and an excitation-dependent emission characteristic of carbon dots. SCG-based CDs showed potential as environmentally relevant fluorescent probes for Fe3+ in water. More importantly, life cycle assessment studies validated the production of CDs from SCG samples as a more environmentally sustainable route, as compared to those using classic reported precursors, when considering either a weight- or a function-based functional unit.
Environmental context The increasing use of sun-creams containing UV-filtering chemicals has led to increased inputs of these compounds to the aquatic environment. Chlorinated waters can convert these chemicals into chlorinated products whose toxic effects are of primary concern. To better understand the environmental fate of sun-cream chemicals, we studied the stability of two UV-filtering compounds under varying conditions of pH, chlorine concentration, temperature, dissolved organic matter and solar irradiation. Abstract The stability of the UV filters 2-ethylhexyl-4-methoxycinnamate (EHMC) and 4-tert-butyl-4′-methoxydibenzoylmethane (BDM) in chlorinated water was studied. High-performance liquid chromatography (HPLC)-UV-diode array detection (DAD) was used to follow the reaction kinetics of both UV filters and HPLC-tandem mass spectrometry (MS/MS) was used to tentatively identify the major transformation by-products. Under the experimental conditions used in this work both UV filters reacted with chlorine following pseudo-first order kinetics: rate constant k=0.0095±0.0007min–1 and half-life t1/2=73±4min for EHMC and rate constant k=0.006±0.001min–1 and half-life t1/2=119±14min for BDM (mean±standard deviation). The chemical transformation of the UV filters in chlorinated water led to the formation of chlorinated by-products that were tentatively identified as mono- and dichloro-substituted compounds that resulted from substitution of the hydrogen atoms in the benzene rings by one or two chlorine atoms. Experimental Box–Behnken designs were used to assess the effect of experimental factors: pH, temperature, chlorine concentration, dissolved organic matter and artificial sunlight irradiation on the transformation of the UV filters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.