Shallow water anthozoans, the major builders of modern coral reefs, enhance their metabolic and calcification rates with algal symbionts. Controversy exists over whether these anthozoan-algae associations are flexible over the lifetimes of individual hosts, promoting acclimative plasticity, or are closely linked, such that hosts and symbionts co-evolve across generations. Given the diversity of algal symbionts and the morphological plasticity of many host species, cryptic variation within either partner could potentially confound studies of anthozoan-algal associations. Here, we used ribosomal, organelle and nuclear sequences, along with microsatellite variation, to study the relationship between lineages of a common Caribbean gorgonian and its algal symbionts. The gorgonian Eunicea flexuosa is a broadcast spawner, composed of two recently diverged, genetically distinct lineages largely segregated by depth. We sampled colonies of the two lineages across depth gradients at three Caribbean locations. We find that each host lineage is associated with a unique Symbiodinium B1/184 phylotype. This relationship between host and symbiont is maintained when host colonies are reciprocally transplanted, although cases of within phylotype switching were also observed. Even when the phylotypes of both partners are present at intermediate depths, the specificity between host and symbiont lineages remained absolute. Unrecognized cryptic diversity may mask host-symbiont specificity and change the inference of evolutionary processes in mutualistic associations. Symbiotic specificity thus likely contributes to the ecological divergence of the two partners, generating species diversity within coral reefs.
The oceans are deteriorating at a fast pace. Conservation measures, such as Marine Protected Areas, are being implemented to relieve areas from local stressors and allow populations to restore to natural levels. Successful networks of MPAs operate if the space among MPAs is smaller than the dispersal capacity of the species under protection. We studied connectivity patterns across populations in a series of MPAs in the common yellowhead Jawfish, Opistognathus aurifrons. Using the power of genome-wide variation, we estimated that the maximum effective dispersal is 8.3 km. We found that MPAs exchange migrants likely via intermediate unprotected habitats through stepping stone dispersal. At scales >50 km such connectivity is decreased, particularly across the Mona Passage. The MPA network studied would be unable to maintain connectivity of these small benthic fishes if habitat in between them is extirpated. Our study highlights the power of SNPs to derive effective dispersal distance and the ability of SNPs to make inferences from single individuals. Given that overall reef fish diversity is driven by species with life histories similar to that of the yellowhead jawfish, managers face a challenge to develop strategies that allow connectivity and avoid isolation of populations and their possible extinction.
Growth rates often measured as linear extension rates can serve as a proxy for organismal performance across environments, yet few estimates of these growth rates exist, and fewer are reported from multi-year monitoring. We studied the effect of species, depth, exposure, and life stages on the linear extension rates of common octocorals inhabiting Caribbean reefs. We monitored 16 species from the families Briareidae, Gorgoniidae, and Plexauridae, including eight genera: Antillogorgia, Briareum, Eunicea, Gorgonia, Muricea, Muriceopsis, Plexaura, and Plexaurella. We surveyed over 2,000 colonies across eight reefs in Southwest Puerto Rico from 2003 to 2006. Our surveys include reefs along a gradient of water motion from inside protected reefs to offshore unprotected reefs and from shallow (5 m) forereefs to deeper environments reaching 25 m. We observed that linear extension rates vary across species and largely follow branch thickness variation and colony architecture, with thin plume-like shapes growing faster. We also found that in 7 out of the 16 species, colonies from shallow habitats with brighter and warmer environments have higher growth rates than colonies in deep, low energy, and darker areas. Importantly, small/juvenile corals of most species (<10 cm) grew faster than adult colonies. Our data highlight the possibility that, as climate change continues to deteriorate Caribbean reefs by decimating scleractinian corals and opening new habitat for less vulnerable species, plume-like corals with fast growth rates such as species within the genus Antillogorgia may become the most abundant benthic cnidarians on Caribbean shallow forereefs.
The environment plays an important role in the movement of individuals and their associated genes among populations, which facilitates gene flow. Gene flow can help maintain the genetic diversity both within and between populations and counter the negative impact of genetic drift, which can decrease the fitness of individuals. Sympatric species can have different habitat preferences, and thus can exhibit different patterns of genetic variability and population structure. The specialist-generalist variation hypothesis (SGVH) predicts that specialists will have lower genetic diversity, lower effective population sizes (Ne), and less gene flow among populations. In this study, we used spatially explicit, individual-based comparative approaches to test SGVH predictions in two sympatric cottontail species and identify environmental variables that influence their gene flow. New England cottontail (Sylvilagus transitionalis) is the only native cottontail in the Northeast US, an early successional habitat specialist, and a species of conservation concern. Eastern cottontail (S. floridanus) is an invasive species in the Northeast US and a habitat generalist. We characterized each species’ genomic variation by developing double-digest Restriction-site Associated DNA sequence single nucleotide polymorphism markers, quantified their habitat with Geographic Information System environmental variables, and conducted our analyses at multiple scales. Surprisingly, both species had similar levels of genetic diversity and eastern cottontail’s Ne was only higher than New England cottontail in one of three subregions. At a regional level, the population clusters of New England cottontail were more distinct than eastern cottontail, but the subregional levels showed more geographic areas of restricted gene flow for eastern cottontail than New England cottontail. In general, the environmental variables had the predicted effect on each species’ gene flow. However, the most important environmental variable varied by subregion and species, which shows that location and species matter. Our results provide partial support for the SGVH and the identification of environmental variables that facilitate or impede gene flow can be used to help inform management decisions to conserve New England cottontail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.