In this study population, treatment with alglucosidase alfa was associated with improved walking distance and stabilization of pulmonary function over an 18-month period. (ClinicalTrials.gov number, NCT00158600.)
Mutations of lamin A/C (LMNA) cause a wide range of human disorders, including progeria, lipodystrophy, neuropathies and autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD). EDMD is also caused by X-linked recessive loss-of-function mutations of emerin, another component of the inner nuclear lamina that directly interacts with LMNA. One model for disease pathogenesis of LMNA and emerin mutations is cell-specific perturbations of the mRNA transcriptome in terminally differentiated cells. To test this model, we studied 125 human muscle biopsies from 13 diagnostic groups (125 U133A, 125 U133B microarrays), including EDMD patients with LMNA and emerin mutations. A Visual and Statistical Data Analyzer (VISDA) algorithm was used to statistically model cluster hierarchy, resulting in a tree of phenotypic classifications. Validations of the diagnostic tree included permutations of U133A and U133B arrays, and use of two probe set algorithms (MAS5.0 and MBEI). This showed that the two nuclear envelope defects (EDMD LMNA, EDMD emerin) were highly related disorders and were also related to fascioscapulohumeral muscular dystrophy (FSHD). FSHD has recently been hypothesized to involve abnormal interactions of chromatin with the nuclear envelope. To identify disease-specific transcripts for EDMD, we applied a leave-one-out (LOO) cross-validation approach using LMNA patient muscle as a test data set, with reverse transcription-polymerase chain reaction (RT-PCR) validations in both LMNA and emerin patient muscle. A high proportion of top-ranked and validated transcripts were components of the same transcriptional regulatory pathway involving Rb1 and MyoD during muscle regeneration (CRI-1, CREBBP, Nap1L1, ECREBBP/p300), where each was specifically upregulated in EDMD. Using a muscle regeneration time series (27 time points) we develop a transcriptional model for downstream consequences of LMNA and emerin mutations. We propose that key interactions between the nuclear envelope and Rb and MyoD fail in EDMD at the point of myoblast exit from the cell cycle, leading to poorly coordinated phosphorylation and acetylation steps. Our data is consistent with mutations of nuclear lamina components leading to destabilization of the transcriptome in differentiated cells.
This trial supports the hypothesis that systemic administration of myostatin inhibitors provides an adequate safety margin for clinical studies. Further evaluation of more potent myostatin inhibitors for stimulating muscle growth in muscular dystrophy should be considered.
Introduction
Glucocorticoid (GC) therapy in Duchenne muscular dystrophy (DMD) has altered disease progression, necessitating contemporary natural history studies.
Methods
The Cooperative Neuromuscular Research Group (CINRG) DMD Natural History Study (DMD-NHS) enrolled 340 DMD males, ages 2–28 years. A comprehensive battery of measures was obtained.
Results
A novel composite functional “milestone” scale scale showed clinically meaningful mobility and upper limb abilities were significantly preserved in GC-treated adolescents/young adults. Manual muscle test (MMT)-based calculations of global strength showed that those patients <10 years of age treated with steroids declined by 0.4±0.39 MMT unit/year, compared with −0.4±0.39 MMT unit/year in historical steroid-naive subjects. Pulmonary function tests (PFTs) were relatively preserved in steroid-treated adolescents. The linearity and magnitude of decline in measures were affected by maturational changes and functional status.
Conclusions
In DMD, long-term use of GCs showed reduced strength loss and preserved functional capabilities and PFTs compared with previous natural history studies performed prior to the widespread use of GC therapy.
Contemporary natural history data in Duchenne muscular dystrophy (DMD) is needed to assess care recommendations and aid in planning future trials.
Methods
The Cooperative International Neuromuscular Research Group (CINRG) DMD Natural History Study (DMD‐NHS) enrolled 340 individuals, aged 2–28 years, with DMD in a longitudinal, observational study at 20 centers. Assessments obtained every 3 months for 1 year, at 18 months, and annually thereafter included: clinical history; anthropometrics; goniometry; manual muscle testing; quantitative muscle strength; timed function tests; pulmonary function; and patient‐reported outcomes/health‐related quality‐of‐life instruments.
Results
Glucocorticoid (GC) use at baseline was 62% present, 14% past, and 24% GC‐naive. In those ≥6 years of age, 16% lost ambulation over the first 12 months (mean age 10.8 years).
Conclusions
Detailed information on the study methodology of the CINRG DMD‐NHS lays the groundwork for future analyses of prospective longitudinal natural history data. These data will assist investigators in designing clinical trials of novel therapeutics. Muscle Nerve, 2013
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.