The frequency, complexity and morbidity of neurodegenerative diseases make them a great challenge for nowadays medicine. Most of the treatments currently used for Parkinson's disease – the second most prevalent – are only symptomatic. Therefore, it is urgent to develop drugs that are able to act simultaneously on different targets, being able to stop neuronal death and promote the recovery of neuronal populations already affected. In this work, we studied the activity of a series of hybrid molecules, which combine the structure of both coumarin and an alkynylamine group inspired on rasagiline, as MAO inhibitors, antioxidants and neuroprotective agents. Half of the studied hybrids turned out to be selective monoamine oxidase B (hMAO‐B) inhibitors in the low micro/nanomolar range, demonstrating that positions 3 (compounds 1–3) and 7 (compounds 8 and 10) of the coumarin scaffold are the most suitable for the incorporation of the alkynylamine chain. All the studied compounds proved to be capable of neutralizing free radicals (DPPH). Finally, the 4‐(but‐2‐yn‐1‐ylamino)coumarin (5) showed neuroprotective effects on glial cells and the 4‐methyl‐7‐(pent‐2‐yn‐1‐ylamino)coumarin (8) inhibited intraneuronal ROS production as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.