Galleria mellonella larvae have been widely used as alternative non-mammalian models for the study of fungal virulence and pathogenesis. The larvae can be acquired in small volumes from worm farms, pet stores, or other independent suppliers commonly found in the United States and parts of Europe. However, in countries with no or limited commercial availability, the process of shipping these larvae can cause them stress, resulting in decreased or altered immunity. Furthermore, the conditions used to rear these larvae including diet, humidity, temperature, and maintenance procedures vary among the suppliers. Variation in these factors can affect the response of G. mellonella larvae to infection, thereby decreasing the reproducibility of fungal virulence experiments. There is a critical need for standardized procedures and incubation conditions for rearing G. mellonella to produce quality, unstressed larvae with the least genetic variability. In order to standardize these procedures, cost-effective protocols for the propagation and maintenance of G. mellonella larvae using an artificial diet, which has been successfully used in our own laboratory, requiring minimal equipment and expertise, are herein described. Examples for the application of this model in fungal pathogenicity and gene knockout studies as feasible alternatives for traditionally used animal models are also provided.
The small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae), is a recent but significant pest of honeybee [Apis mellifera L. (Hymenoptera: Apidae)] hives in various regions throughout the world, including Eastern Australia. The larval stage of this beetle damages hives when they feed on brood, pollen, and honeycomb, leaving behind fermented wastes. In cases of extreme damage, hives collapse and are turned to an odorous mass of larvae in fermenting hive products. The yeast Kodamaea ohmeri (Etchells & Bell) Yamada et al. (Ascomycota) has been consistently isolated from the fermenting material as well as each life stage of this beetle. Various studies have noted that the small hive beetle is attracted to volatiles from hive products and those of the yeast K. ohmeri, although earlier studies have not used naturally occurring hive products as their source of fermentation. This study investigated changes through time in the attractiveness of natural honeybee hive products to the small hive beetle as the hive products were altered by the action of beetle larvae and fermentation by K. ohmeri. We used gas chromatography-mass spectrometry and choice-test behavioural assays to investigate these changes using products sampled from three apiaries. Attractiveness of the fermenting hive products ('slime') increased as fermentation progressed, and volatile profiles became more complex. Fermenting hive products remained extremely attractive for more than 30 days, significantly longer than previous reports. These results have strong implications for the development of an external attractant trap to assist in the management of this invasive pest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.