Properties of the hydroxyapatite obtained by electrochemical assisted deposition (ED) are dependent on several factors including deposition temperature, electrolyte pH and concentrations, applied potential. All of these factors directly influence the morphology, stoichiometry, crystallinity, electrochemical behaviour, and particularly the coating thickness. Coating structure together with surface micro- and nano-scale topography significantly influence early stages of the implant bio-integration. The aim of this study is to analyse the effect of pH modification on the morphology, corrosion behaviour and in vitro bioactivity and in vivo biocompatibility of hydroxyapatite prepared by ED on the additively manufactured Ti64 samples. The coatings prepared in the electrolytes with pH = 6 have predominantly needle like morphology with the dimensions in the nanometric scale (~30 nm). Samples coated at pH = 6 demonstrated higher protection efficiency against the corrosive attack as compared to the ones coated at pH = 5 (~93% against 89%). The in vitro bioactivity results indicated that both coatings have a greater capacity of biomineralization, compared to the uncoated Ti64. Somehow, the coating deposited at pH = 6 exhibited good corrosion behaviour and high biomineralization ability. In vivo subcutaneous implantation of the coated samples into the white rats for up to 21 days with following histological studies showed no serious inflammatory process.
Our study focused on the long-term degradation under simulated conditions of coatings based on different compositions of polycaprolactone-polyethylene glycol blends (PCL-blend-PEG), fabricated for titanium implants by a dip-coating technique. The degradation behavior of polymeric coatings was evaluated by polymer mass loss measurements of the PCL-blend-PEG during immersion in SBF up to 16 weeks and correlated with those yielded from electrochemical experiments. The results are thoroughly supported by extensive compositional and surface analyses (FTIR, GIXRD, SEM, and wettability investigations). We found that the degradation behavior of PCL-blend-PEG coatings is governed by the properties of the main polymer constituents: the PEG solubilizes fast, immediately after the immersion, while the PCL degrades slowly over the whole period of time. Furthermore, the results evidence that the alteration of blend coatings is strongly enhanced by the increase in PEG content. The biological assessment unveiled the beneficial influence of PCL-blend-PEG coatings for the adhesion and spreading of both human-derived mesenchymal stem cells and endothelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.