Mitochondrial aminoacyl‐tRNA synthetases play a major role in protein translation, synthesis, and oxidative phosphorylation. We reviewed all patients diagnosed with mitochondrial aminoacyl‐tRNA synthetase deficiencies diagnosed in a single neurometabolic clinic. We report five patients with mitochondrial aminoacyl‐tRNA synthetase deficiencies including DARS2, EARS2, PARS2, and RARS2 deficiencies. Siblings with DARS2 deficiency presented with global developmental delay within the first year of life. DARS2, EARS2, PARS2, and RARS2 deficiencies were identified by whole exome sequencing. We report coagulation factor abnormalities in PARS2 deficiency for the first time. We also report symmetric increased signal intensity in globus pallidi in FLAIR images in brain MRI in EARS2 deficiency for the first time. One patient with RARS2 deficiency had compound heterozygous variants in RARS2. One of those variants was an intronic variant. We confirmed the pathogenicity by mRNA studies. Mitochondrial aminoacyl‐tRNA synthetase deficiencies are diagnosed by molecular genetic investigations. Clinically available non‐invasive biochemical investigations are non‐specific for the diagnosis of mitochondrial aminoacyl‐tRNA synthetase deficiencies. A combination of brain MRI features and molecular genetic investigations should be undertaken to confirm the diagnosis of mitochondrial aminoacyl‐tRNA synthetase deficiencies.
BackgroundNeuronal ceroid lipofuscinoses are neurodegenerative disorders. To investigate the diagnostic yield of direct Sanger sequencing of the CLN genes, we reviewed Molecular Genetics Laboratory Database for molecular genetic test results of the CLN genes from a single clinical molecular diagnostic laboratory.MethodsWe reviewed electronic patient charts. We used consent forms and Research Electronic Data Capture questionnaires for the patients from outside of our Institution. We reclassified all variants in the CLN genes.ResultsSix hundred and ninety three individuals underwent the direct Sanger sequencing of the CLN genes for the diagnosis of neuronal ceroid lipofuscinoses. There were 343 symptomatic patients and 350 family members. Ninety‐one symptomatic patients had molecular genetic diagnosis of neuronal ceroid lipofuscinoses including CLN1 (PPT1) (n = 10), CLN2 (TPP1) (n = 33), CLN3 (n = 17), CLN5 (n = 7), CLN6 (n = 10), CLN7 (MFSD8) (n = 10), and CLN8 (n = 4) diseases. The diagnostic yield of direct Sanger sequencing of CLN genes was 27% in symptomatic patients. We report detailed clinical and investigation results of 33 NCL patients. Juvenile onset CLN1 (PPT1) and adult onset CLN6 diseases were nonclassical phenotypes.ConclusionIn our study, the diagnostic yield of direct Sanger sequencing was close to diagnostic yield of whole exome sequencing. Developmental regression, cognitive decline, visual impairment and cerebral and/or cerebellar atrophy in brain MRI are significant clinical and neuroimaging denominators to include NCL in the differential diagnosis.
Background/Objectives Café‐au‐lait macules (CALMs) are a characteristic feature of neurofibromatosis type 1 (NF1), but also occur in other genetic disorders. Differential diagnosis of CALMs remains challenging and can be stressful for families. We sought to examine the role of an established CALMs screening clinic in diagnosing CALMs‐related disorders. Method We retrospectively reviewed patients seen between July 2012 and January 2019 in a CALMs screening clinic at The Hospital for Sick Children, a tertiary pediatric hospital in Toronto, Canada. Pediatric patients were referred because of multiple CALMs or suspected NF1. Selection was based on a chronological referral sample with no exclusions. A pediatric dermatologist examined all patients for CALMs and NF1 manifestations. Genetic testing was offered to confirm a clinical diagnosis or when clinical findings were inconclusive. Results Three hundred patients, of which 152 (50.7%) were female and had a mean age of 5.6 ± 4.8 years were seen during the study period. NF1 was diagnosed in 76 (25.3%) patients, mosaic NF1 in 38 (12.7%) patients, and 8 (2.7%) patients received other genetic diagnoses. One hundred and twelve (37.3%) patients were diagnosed with isolated CALMs not associated with an underlying genetic disease. Furthermore, 36 (12%) of our patients did not have CALMs. Conclusions The CALMs screening clinic aided in the early diagnosis of genetic disorders such as NF1 and distinguished CALMs from other hyperpigmented lesions. We encourage the adoption of this clinic model in referral centers to streamline and optimize care of patients with presumptive diagnosis of CALMs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.